Skip to main content
Log in

Y-shaped oligonucleotides: a promising platform for enhanced therapy with siRNA and CpG Oligodeoxyribonucleotides

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Nucleic acids (DNA and RNA) have been recognized as promising building blocks to fabricate a variety of well-defined two- and three-dimensional architectures through the programmable molecular self-assembly of multiple oligomeric strands. Y-shaped oligonucleotides are currently among the most widely employed nanostructures in the field of nucleic acid nanotechnology due to their unique features, including high structural stability, excellent biocompatibility, simplicity and ease of synthesis, and precisely controlled sizes. To functionalize biological activity, Y-shaped oligonucleotides can be incorporated with therapeutic genes such as small interfering RNA (siRNA) for target gene-specific silencing and CpG oligonucleotides (CpG ODN) for the activation of innate immune responses. Compared to the linear structures of siRNA and CpG ODN, Y-shaped siRNA and CpG ODN structures have demonstrated significant potential in the treatment of various diseases due to improved serum stability and intracellular uptake. Here, we review a broad spectrum of related topics, including the design, construction, and characteristics of Y-shaped oligonucleotides with a specific focus on their potential as a promising platform for enhancing the therapeutic efficacy of siRNA and CpG ODN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247. https://doi.org/10.1016/0022-5193(82)90002-9

    Article  CAS  PubMed  Google Scholar 

  2. Chidchob P, Sleiman HF (2018) Recent advances in DNA nanotechnology. Curr Opin Chem Biol 46:63–70. https://doi.org/10.1016/j.cbpa.2018.04.012

    Article  CAS  PubMed  Google Scholar 

  3. Seeman NC, Belcher AM (2002) Emulating biology: building nanostructures from the bottom up. Proc Natl Acad Sci U S A 99(Suppl 2):6451–6455. https://doi.org/10.1073/pnas.221458298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Egli M, Manoharan M (2023) Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic Acids Res 51:2529–2573. https://doi.org/10.1093/nar/gkad067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bujold KE, Lacroix A, Sleiman HF (2018) DNA nanostructures at the interface with biology. Chem 4:495–521. https://doi.org/10.1016/j.chempr.2018.02.005

    Article  CAS  Google Scholar 

  6. Dong Y, Yao C, Zhu Y et al (2020) DNA functional materials assembled from branched DNA: design, synthesis, and applications. Chem Rev 120:9420–9481. https://doi.org/10.1021/acs.chemrev.0c00294

    Article  CAS  PubMed  Google Scholar 

  7. Seeman NC (2005) Structural DNA nanotechnology: an overview. Methods Mol Biol 303:143–166. https://doi.org/10.1385/1-59259-901-X:143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seeman N, Sleiman H (2018) DNA nanotechnology. Nat Rev Mater 3:17068. https://doi.org/10.1038/natrevmats.2017.68

    Article  CAS  Google Scholar 

  9. Wang W, Lin M, Wang W et al (2023) DNA tetrahedral nanostructures for the biomedical application and spatial orientation of biomolecules. Bioact Mater 33:279–310. https://doi.org/10.1016/j.bioactmat.2023.10.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ma W, Zhan Y, Zhang Y et al (2021) The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduct Target Ther 6:351. https://doi.org/10.1038/s41392-021-00727-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhou J, Wang W, Li S et al (2020) Dual-mode amplified detection of rabies virus oligonucleotide via Y-shaped DNA assembly. Sens Actuators B Chem 304:127267. https://doi.org/10.1016/j.snb.2019.127267

    Article  CAS  Google Scholar 

  12. Ram Kumar Pandian S, Yuan CJ, Lin CC et al (2017) DNA-based nanowires and nanodevices. Adv Phys-X 2:22–34. https://doi.org/10.1080/23746149.2016.1254065

    Article  CAS  Google Scholar 

  13. Zhao M, Wang R, Yang K et al (2023) Nucleic acid nanoassembly-enhanced RNA therapeutics and diagnosis. Acta Pharm Sin B 13:916–941. https://doi.org/10.1016/j.apsb.2022.10.019

    Article  CAS  PubMed  Google Scholar 

  14. Zhu G, Song P, Wu J et al (2022) Application of nucleic acid frameworks in the construction of nanostructures and cascade biocatalysts: recent progress and perspective. Front Bioeng Biotechnol 9:792489. https://doi.org/10.3389/fbioe.2021.792489

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gubu A, Zhang X, Lu A et al (2023) Nucleic acid amphiphiles: synthesis, properties, and applications. Mol Ther Nucleic Acids 33:144–163. https://doi.org/10.1016/j.omtn.2023.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Meng HM, Zhang X, Lv Y et al (2014) DNA dendrimer: an efficient nanocarrier of functional nucleic acids for intracellular molecular sensing. ACS Nano 8:6171–6181. https://doi.org/10.1021/nn5015962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yan J, Zhan X, Zhang Z et al (2021) Tetrahedral DNA nanostructures for effective treatment of cancer: advances and prospects. J Nanobiotechnol 19:412. https://doi.org/10.1186/s12951-021-01164-0

    Article  CAS  Google Scholar 

  18. Wang DX, Wang J, Wang YX et al (2021) DNA nanostructure-based nucleic acid probes: construction and biological applications. Chem Sci 12:7602–7622. https://doi.org/10.1039/d1sc00587a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kong D, Wang X, Gu C et al (2021) Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay. J Am Chem Soc 143:17004–17014. https://doi.org/10.1021/jacs.1c06325

    Article  CAS  PubMed  Google Scholar 

  20. Mei-Ling L, Yi L, Mei-Ling Z et al (2022) Y-shaped DNA nanostructures assembled-spherical nucleic acids as target converters to activate CRISPR-Cas12a enabling sensitive ECL biosensing. Biosens Bioelectron 214:114512. https://doi.org/10.1016/j.bios.2022.114512

    Article  CAS  PubMed  Google Scholar 

  21. Yu X, Hu L, He H et al (2019) Y-shaped DNA-Mediated hybrid nanoflowers as efficient gene carriers for fluorescence imaging of tumor-related mRNA in living cells. Anal Chim Acta 1057:114–122. https://doi.org/10.1016/j.aca.2018.12.062

    Article  CAS  PubMed  Google Scholar 

  22. Chatterjee S, Lee JB, Valappil NV et al (2012) Probing Y-shaped DNA structure with time-resolved FRET. Nanoscale 4:1568–1571. https://doi.org/10.1039/c2nr12039a

    Article  CAS  PubMed  Google Scholar 

  23. Zhong W, Zheng Y, Huang L et al (2023) Construction of an ATP-activated Y-shape DNA probe for smart miRNA imaging in living cells. Chemistry 5:1634–1644. https://doi.org/10.3390/chemistry5030112

    Article  CAS  Google Scholar 

  24. Zhang K, Li Y, Liu J et al (2020) Y-shaped circular aptamer-DNAzyme conjugates for highly efficient in vivo gene silencing. CCS Chem 2:631–641. https://doi.org/10.31635/ccschem.020.202000170

    Article  CAS  Google Scholar 

  25. Komiyama M, Sumaoka J (2023) Nanoarchitectures to deliver nucleic acid drugs to disease sites. ChemNanoMat 9:e202300069. https://doi.org/10.1002/cnma.202300069

    Article  CAS  Google Scholar 

  26. Nishikawa M, Tan M, Liao W et al (2019) Nanostructured DNA for the delivery of therapeutic agents. Adv Drug Deliv Rev 147:29–36. https://doi.org/10.1016/j.addr.2019.09.004

    Article  CAS  PubMed  Google Scholar 

  27. Lv Z, Zhu Y, Li F (2021) DNA functional nanomaterials for controlled delivery of nucleic acid-based drugs. Front Bioeng Biotechnol 9:720291. https://doi.org/10.3389/fbioe.2021.720291

    Article  PubMed  PubMed Central  Google Scholar 

  28. Um SH, Lee JB, Park N et al (2006) Enzyme-catalysed assembly of DNA hydrogel. Nat Mater 5:797–801. https://doi.org/10.1038/nmat1741

    Article  CAS  PubMed  Google Scholar 

  29. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811. https://doi.org/10.1038/35888

    Article  CAS  PubMed  Google Scholar 

  30. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498. https://doi.org/10.1038/35078107

    Article  CAS  PubMed  Google Scholar 

  31. Levanova A, Poranen MM (2018) RNA interference as a prospective tool for the control of human viral infections. Front Microbiol 9:2151. https://doi.org/10.3389/fmicb.2018.02151

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hu B, Zhong L, Weng Y et al (2020) Therapeutic siRNA: state of the art. Signal Transduct Target Ther 5:101. https://doi.org/10.1038/s41392-020-0207-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Svoboda P (2020) Key mechanistic principles and considerations concerning RNA interference. Front Plant Sci 11:1237. https://doi.org/10.3389/fpls.2020.01237

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Li Y (2024) Current advances in antiviral RNA interference in mammals. FEBS J 291:208–216. https://doi.org/10.1111/febs.16728

    Article  CAS  PubMed  Google Scholar 

  35. Kanasty RL, Whitehead KA, Vegas AJ et al (2012) Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther 20:513–524. https://doi.org/10.1038/mt.2011.294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dominska M, Dykxhoorn DM (2010) Breaking down the barriers: siRNA delivery and endosome escape. J Cell Sci 123:1183–1189. https://doi.org/10.1242/jcs.066399

    Article  CAS  PubMed  Google Scholar 

  37. Kang H, Ga YJ, Kim SH et al (2023) Small interfering RNA (siRNA)-based therapeutic applications against viruses: principles, potential, and challenges. J Biomed Sci 30:88. https://doi.org/10.1186/s12929-023-00981-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Draz MS, Fang BA, Zhang P et al (2014) Nanoparticle-mediated systemic delivery of siRNA for treatment of cancers and viral infections. Theranostics 4:872–892. https://doi.org/10.7150/thno.9404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Tsui NB, Ng EK, Lo YM (2002) Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem 48:1647–1653

    Article  CAS  PubMed  Google Scholar 

  40. Nakashima Y, Abe H, Abe N et al (2011) Branched RNA nanostructures for RNA interference. Chem Commun (Camb) 47:8367–8369. https://doi.org/10.1039/c1cc11780g

    Article  CAS  PubMed  Google Scholar 

  41. Nair BG, Zhou Y, Hagiwara K et al (2017) Enhancement of synergistic gene silencing by RNA interference using branched “3-in-1” trimer siRNA. J Mater Chem B 5:4044–4051. https://doi.org/10.1039/c7tb00846e

    Article  CAS  PubMed  Google Scholar 

  42. Hong CA, Eltoukhy AA, Lee H et al (2015) Dendrimeric siRNA for efficient gene silencing. Angew Chem Int Ed Engl 54:6740–6744. https://doi.org/10.1002/anie.201412493

    Article  CAS  PubMed  Google Scholar 

  43. Hong CA, Lee SH, Kim JS et al (2011) Gene silencing by siRNA microhydrogels via polymeric nanoscale condensation. J Am Chem Soc 133:13914–13917. https://doi.org/10.1021/ja2056984

    Article  CAS  PubMed  Google Scholar 

  44. Jang B, Kim B, Kim H et al (2018) Enzymatic synthesis of self-assembled dicer substrate RNA nanostructures for programmable gene silencing. Nano Lett 18:4279–4284. https://doi.org/10.1021/acs.nanolett.8b01267

    Article  CAS  PubMed  Google Scholar 

  45. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760. https://doi.org/10.1146/annurev.immunol.20.100301.064842

    Article  CAS  PubMed  Google Scholar 

  46. Lai CY, Yu GY, Luo Y et al (2019) Immunostimulatory activities of CpG-oligodeoxynucleotides in teleosts: toll-like receptors 9 and 21. Front Immunol 10:179. https://doi.org/10.3389/fimmu.2019.00179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Otsuka T, Nishida S, Shibahara T et al (2022) CpG ODN (K3)-toll-like receptor 9 agonist-induces Th1-type immune response and enhances cytotoxic activity in advanced lung cancer patients: a phase I study. BMC Cancer 22:744. https://doi.org/10.1186/s12885-022-09818-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jin Y, Zhuang Y, Dong X et al (2021) Development of CpG oligodeoxynucleotide TLR9 agonists in anti-cancer therapy. Expert Rev Anticancer Ther 21:841–851. https://doi.org/10.1080/14737140.2021.1915136

    Article  CAS  PubMed  Google Scholar 

  49. Gunawardana T, Ahmed KA, Goonewardene K et al (2019) Synthetic CpG-ODN rapidly enriches immune compartments in neonatal chicks to induce protective immunity against bacterial infections. Sci Rep 9:341. https://doi.org/10.1038/s41598-018-36588-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chen X, Wu Y, Qiu Y et al (2023) CpG ODN 2102 promotes antibacterial immune responses and enhances vaccine-induced protection in golden pompano (Trachinotusovatus). Fish Shellfish Immunol 137:108783. https://doi.org/10.1016/j.fsi.2023.108783

    Article  CAS  PubMed  Google Scholar 

  51. Hemmi H, Takeuchi O, Kawai T et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745. https://doi.org/10.1038/35047123

    Article  CAS  PubMed  Google Scholar 

  52. Wagner H (2001) Toll meets bacterial CpG-DNA. Immunity 14:499–502. https://doi.org/10.1016/s1074-7613(01)00144-3

    Article  CAS  PubMed  Google Scholar 

  53. Klinman DM, Yi AK, Beaucage SL et al (1996) CpG motifs present in bacteria DNA rapidly induce lymphocytes to secrete interleukin 6, interleukin 12, and interferon gamma. Proc Natl Acad Sci U S A 93:2879–2883. https://doi.org/10.1073/pnas.93.7.2879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sparwasser T, Miethke T, Lipford G et al (1997) Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor-alpha-mediated shock. Eur J Immunol 27:1671–1679. https://doi.org/10.1002/eji.1830270712

    Article  CAS  PubMed  Google Scholar 

  55. Sun S, Zhang X, Tough DF et al (1998) Type I interferon-mediated stimulation of T cells by CpG DNA. J Exp Med 188:2335–2342. https://doi.org/10.1084/jem.188.12.2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lin SY, Yao BY, Hu CJ et al (2020) Induction of robust immune responses by CpG-ODN-loaded hollow polymeric nanoparticles for antiviral and vaccine applications in chickens. Int J Nanomedicine 15:3303–3318. https://doi.org/10.2147/IJN.S241492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dalpke A, Zimmermann S, Heeg K (2002) Immunopharmacology of CpG DNA. Biol Chem 383:1491–1500. https://doi.org/10.1515/BC.2002.171

    Article  CAS  PubMed  Google Scholar 

  58. Klinman DM (2004) Immunotherapeutic uses of CpG oligodeoxynucleotides. Nat Rev Immunol 4:249–258. https://doi.org/10.1038/nri1329

    Article  CAS  PubMed  Google Scholar 

  59. Krieg AM (2006) Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 5:471–484. https://doi.org/10.1038/nrd2059

    Article  CAS  PubMed  Google Scholar 

  60. Li T, Wu J, Zhu S et al (2020) A novel C type CpG oligodeoxynucleotide exhibits immunostimulatory activity in vitro and enhances antitumor effect in vivo. Front Pharmacol 11:8. https://doi.org/10.3389/fphar.2020.00008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kandimalla ER, Yu D, Agrawal S (2002) Towards optimal design of second-generation immunomodulatory oligonucleotides. Curr Opin Mol Ther 4:122–129

    CAS  PubMed  Google Scholar 

  62. Vollmer J, Krieg AM (2009) Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 61:195–204. https://doi.org/10.1016/j.addr.2008.12.008

    Article  CAS  PubMed  Google Scholar 

  63. Adamus T, Kortylewski M (2018) The revival of CpG oligonucleotide-based cancer immunotherapies. Contemp Oncol (Pozn) 22:56–60. https://doi.org/10.5114/wo.2018.73887

    Article  PubMed  Google Scholar 

  64. Ruan M, Thorn K, Liu S et al (2014) The secretion of IL-6 by CpG-ODN-treated cancer cells promotes T-cell immune responses partly through the TLR-9/AP-1 pathway in oral squamous cell carcinoma. Int J Oncol 44:2103–2110. https://doi.org/10.3892/ijo.2014.2356

    Article  CAS  PubMed  Google Scholar 

  65. Yuan S, Qiao T, Li X et al (2018) Toll-like receptor 9 activation by CpG oligodeoxynucleotide 7909 enhances the radiosensitivity of A549 lung cancer cells via the p53 signaling pathway. Oncol Lett 15:5271–5279. https://doi.org/10.3892/ol.2018.7916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Huang L, Wang Z, Liu C et al (2017) CpG-based immunotherapy impairs antitumor activity of BRAF inhibitors in a B-cell-dependent manner. Oncogene 36:4081–4086. https://doi.org/10.1038/onc.2017.35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Givens BE, Geary SM, Salem AK (2018) Nanoparticle-based CpG-oligonucleotide therapy for treating allergic asthma. Immunotherapy 10:595–604. https://doi.org/10.2217/imt-2017-0142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mutwiri GK, Nichani AK, Babiuk S et al (2004) Strategies for enhancing the immunostimulatory effects of CpG oligodeoxynucleotides. J Control Release 97:1–17. https://doi.org/10.1016/j.jconrel.2004.02.022

    Article  CAS  PubMed  Google Scholar 

  69. Chiodetti AL, Sánchez Vallecillo MF, Dolina JS et al (2018) Class-B CpG-ODN formulated with a nanostructure induces type I interferons-dependent and CD4+ T cell-independent CD8+ T-cell response against unconjugated protein antigen. Front Immunol 9:2319. https://doi.org/10.3389/fimmu.2018.02319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nagaoka M, Liao W, Kusamori K et al (2022) Targeted delivery of immunostimulatory CpG oligodeoxynucleotides to antigen-presenting cells in draining lymph nodes by stearic acid modification and nanostructurization. Int J Mol Sci 23:1350. https://doi.org/10.3390/ijms23031350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Takano S, Miyashima Y, Fujii S et al (2023) Molecular bottlebrushes for immunostimulatory CpG ODN delivery: relationship among cation density, complex formation ability, and cytotoxicity. Biomacromol 24:1299–1309. https://doi.org/10.1021/acs.biomac.2c01348

    Article  CAS  Google Scholar 

  72. Cheng T, Miao J, Kai D et al (2018) Polyethylenimine-mediated CpG oligodeoxynucleotide delivery stimulates bifurcated cytokine induction. ACS Biomater Sci Eng 4:1013–1018. https://doi.org/10.1021/acsbiomaterials.8b00049

    Article  CAS  PubMed  Google Scholar 

  73. Chi Q, Yang Z, Xu K et al (2020) DNA nanostructure as an efficient drug delivery platform for immunotherapy. Front Pharmacol 10:1585. https://doi.org/10.3389/fphar.2019.01585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nishikawa M, Matono M, Rattanakiat S et al (2008) Enhanced immunostimulatory activity of oligodeoxynucleotides by Y-shape formation. Immunology 124:247–255. https://doi.org/10.1111/j.1365-2567.2007.02762.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rattanakiat S, Nishikawa M, Funabashi H et al (2009) The assembly of a short linear natural cytosine-phosphate-guanine DNA into dendritic structures and its effect on immunostimulatory activity. Biomaterials 30:5701–5706. https://doi.org/10.1016/j.biomaterials.2009.06.053

    Article  CAS  PubMed  Google Scholar 

  76. Sands H, Gorey-Feret LJ, Cocuzza AJ et al (1994) Biodistribution and metabolism of internally 3H-labeled oligonucleotides. I. Comparison of a phosphodiester and a phosphorothioate. Mol Pharmacol 45:932–943

    CAS  PubMed  Google Scholar 

  77. Matsuoka N, Nishikawa M, Mohri K et al (2010) Structural and immunostimulatory properties of Y-shaped DNA consisting of phosphodiester and phosphorothioate oligodeoxynucleotides. J Control Release 148:311–316. https://doi.org/10.1016/j.jconrel.2010.09.019

    Article  CAS  PubMed  Google Scholar 

  78. Jung H, Kim D, Kang YY et al (2018) CpG incorporated DNA microparticles for elevated immune stimulation for antigen presenting cells. RSC Adv 8:6608–6615. https://doi.org/10.1039/c7ra13293j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Qu Y, Ju Y, Cortez-Jugo C et al (2020) Template-mediated assembly of DNA into microcapsules for immunological modulation. Small 16:e2002750. https://doi.org/10.1002/smll.202002750

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Yeungnam University Research Grant (220A580028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheol Am Hong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, I.S., Nam, H.J. & Hong, C.A. Y-shaped oligonucleotides: a promising platform for enhanced therapy with siRNA and CpG Oligodeoxyribonucleotides. Biotechnol Bioproc E (2024). https://doi.org/10.1007/s12257-024-00109-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12257-024-00109-2

Keywords

Navigation