Skip to main content
Log in

Assessment of Damnacanthus major Siebold & Zucc callus for antioxidative and moisturizing capacities using an artificial skin alternative

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Plants contain many useful substances; however, their availability and uniformity are constrained. Controlled cell culture is attracting attention as a method for identifying useful substances with better quality control than conventional plant extraction techniques. Artificial skin is widely used as an alternative to animal testing to evaluate the safety and efficacy of cosmetic materials. The Damnacanthus major Siebold & Zucc is an evergreen shrub of the madder family, and the anthraquinone series substances present in its roots have antioxidant and whitening effects, implying its potential to be used in cosmetics. In this study, the antioxidant, moisturizing, and phototoxic properties of the ethanol extract of its callus were assessed using an artificial skin alternative. It showed a distinct antioxidant effect over 600 μg/mL and a moisturizing effect over 125 μg/mL. Phospho-extracellular signal-regulated kinase 1/2 and cAMP response element-binding protein were found to be upregulated in the artificial skin due to the moisturizing mechanism, and phospho-NFκB repressing factor was observed to be upregulated in human epidermal keratinocytes (HaCaT cells) due to the antioxidant mechanism. Additionally, analysis of the artificial skin revealed no phototoxicity up to 1 mg/mL. The results of this study demonstrate that the ethanol extract of Damnacanthus major Siebold & Zucc can be used as a cosmetic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Omer RA, Asami P, Birungi J (2018) Callus induction and plant regeneration from immature embryos of sweet sorghum (Sorghum bicolor Moench). Biotechnology (Faisalabad). https://doi.org/10.3923/biotech.2018.12.18

    Article  PubMed  Google Scholar 

  2. Barbulova A, Apone F, Colucci G (2014) Plant cell cultures as source of cosmetic active ingredients. Cosmetics 1:94–104. https://doi.org/10.3390/cosmetics1020094

    Article  Google Scholar 

  3. Yen GC, Duh PD, Chuang DY (2000) Antioxidant activity of anthraquinones and anthrone. Food Chem 70:437–441. https://doi.org/10.1016/S0308-8146(00)00108-4

    Article  CAS  Google Scholar 

  4. Zeng HJ, Sun DQ, Chu SH et al (2020) Inhibitory effects of four anthraquinones on tyrosinase activity: insight from spectroscopic analysis and molecular docking. Int J Biol Macromol 160:153–163. https://doi.org/10.1016/j.ijbiomac.2020.05.193

    Article  CAS  PubMed  Google Scholar 

  5. Yang X, Zhang P, Wu J et al (2012) The neuroprotective and lifespan-extension activities of Damnacanthus officinarum extracts in Caenorhabditis elegans. J Ethnopharmacol 141:41–47. https://doi.org/10.1016/j.jep.2012.01.025

    Article  PubMed  Google Scholar 

  6. Heo KY (2021) Establishment of bioreactor culture system for rubiadin production from Damnacanthus major cells and its efficacy evaluation for materialization of functional cosmetics. Dissertation, Chungbuk National University

  7. Pandey R, Poojan S (2023) Artificial skin models for animal-free testing: 3D skin reconstruct approach, a journey in the past two decades. In: Pant AB, Dwivedi A, Ray RS, Tripathi A, Upadhyay AK, Poojan S (eds) Skin 3-D models and cosmetics toxicity. Springer, Singapore

    Google Scholar 

  8. Yan WC, Davoodi P, Vijayavenkataraman S et al (2018) 3D bioprinting of skin tissue: from pre-processing to final product evaluation. Adv Drug Deliv Rev 132:270–295. https://doi.org/10.1016/j.addr.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  9. Jun SY, Shin HS (2021) Analysis and prediction of surface condition of artificial skin based on CNN and ConvLSTM. Biotechnol Bioprocess Eng 26:369–374. https://doi.org/10.1007/s12257-020-0253-9

    Article  CAS  Google Scholar 

  10. OECD (2019) Test No. 432: in vitro 3T3 NRU phototoxicity test. OECD Publishing, Paris

    Book  Google Scholar 

  11. Neo JRE, Teo ZN, Yeo JSE et al (2022) Tocotrienols improve urban particulate matter-induced skin damages by regulating skin barrier function and ROS/MAPK signaling pathway in keratinocytes. Atmos Pollut Res 13:101564. https://doi.org/10.1016/j.apr.2022.101564

    Article  CAS  Google Scholar 

  12. Park Y, Han BK, Choi HS et al (2015) Effect of porcine placenta extract from subcritical water extraction on photodamage in human keratinocytes. Korean J Food Sci Anim Resour 35:164–170. https://doi.org/10.5851/kosfa.2015.35.2.164

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shastak Y, Gordillo A, Pelletier W (2023) The relationship between vitamin A status and oxidative stress in animal production. J Appl Anim Res 51:546–553. https://doi.org/10.1080/09712119.2023.2239319

    Article  CAS  Google Scholar 

  14. Saavalainen K, Pasonen-Seppänen S, Dunlop TW et al (2005) The human hyaluronan synthase 2 gene is a primary retinoic acid and epidermal growth factor responding gene. J Biol Chem 280:14636–14644. https://doi.org/10.1074/jbc.M500206200

    Article  CAS  PubMed  Google Scholar 

  15. Huang YN, Wang JY, Lee CT et al (2012) L-ascorbate attenuates methamphetamine neurotoxicity through enhancing the induction of endogenous heme oxygenase-1. Toxicol Appl Pharmacol 265:241–252. https://doi.org/10.1016/j.taap.2012.08.036

    Article  CAS  PubMed  Google Scholar 

  16. Zhao B, Fei J, Chen Y et al (2014) Vitamin C treatment attenuates hemorrhagic shock related multi-organ injuries through the induction of heme oxygenase-1. BMC Complement Altern Med 14:442. https://doi.org/10.1186/1472-6882-14-442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kim JA, Ahn BN, Kong CS et al (2013) The chromene sargachromanol E inhibits ultraviolet A-induced ageing of skin in human dermal fibroblasts. Br J Dermatol 168:968–976. https://doi.org/10.1111/bjd.12187

    Article  CAS  PubMed  Google Scholar 

  18. Shao L, Jiang S, Li Y et al (2023) Aqueous extract of Cordyceps cicadae (Miq.) promotes hyaluronan synthesis in human skin fibroblasts: a potential moisturizing and anti-aging ingredient. PLoS One 18:e0274479. https://doi.org/10.1371/journal.pone.0274479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee JE, Kim YA, Yu S et al (2019) 3,6-Anhydro-L-galactose increases hyaluronic acid production via the EGFR and AMPKα signaling pathway in HaCaT keratinocytes. J Dermatol Sci 96:90–98. https://doi.org/10.1016/j.jdermsci.2019.10.005

    Article  CAS  PubMed  Google Scholar 

  20. Yasin A, Ren Y, Li J et al (2022) Advances in hyaluronic acid for biomedical applications. Front Bioeng Biotechnol 10:910290. https://doi.org/10.3389/fbioe.2022.910290

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chaiyana W, Chansakaow S, Intasai N et al (2020) Chemical constituents, antioxidant anti-MMPs and anti-hyaluronidase activities of Thunbergia laurifolia Lindl. leaf extracts for skin aging and skin damage prevention. Molecules 25:1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim HJ, Nel AE (2005) The role of phase II antioxidant enzymes in protecting memory T cells from spontaneous apoptosis in young and old mice. J Immunol 175:2948–2959. https://doi.org/10.4049/jimmunol.175.5.2948

    Article  CAS  PubMed  Google Scholar 

  23. Ryter SW (2022) Heme oxygenase-1: an anti-inflammatory effector in cardiovascular, lung, and related metabolic disorders. Antioxidants (Basel) 11:555. https://doi.org/10.3390/antiox11030555

    Article  CAS  PubMed  Google Scholar 

  24. Alfonso-Prieto M, Biarnés X, Vidossich P et al (2009) The molecular mechanism of the catalase reaction. J Am Chem Soc 131:11751–11761. https://doi.org/10.1021/ja9018572

    Article  CAS  PubMed  Google Scholar 

  25. Azadmanesh J, Borgstahl GEO (2018) A review of the catalytic mechanism of human manganese superoxide dismutase. Antioxidants (Basel) 7:25. https://doi.org/10.3390/antiox7020025

    Article  CAS  PubMed  Google Scholar 

  26. Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295. https://doi.org/10.1074/jbc.R900010200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pappas A (2009) Epidermal surface lipids. Dermatoendocrinol 1:72–76. https://doi.org/10.4161/derm.1.2.7811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bravo B, Correia P, Gonçalves Junior JE et al (2022) Benefits of topical hyaluronic acid for skin quality and signs of skin aging: from literature review to clinical evidence. Dermatol Ther 35:15903. https://doi.org/10.1111/dth.15903

    Article  CAS  Google Scholar 

  29. Makkonen KM, Pasonen-Seppänen S, Törrönen K et al (2009) Regulation of the hyaluronan synthase 2 gene by convergence in cyclic AMP response element-binding protein and retinoid acid receptor signaling. J Biol Chem 284:18270–18281. https://doi.org/10.1074/jbc.M109.012492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vigetti D, Deleonibus S, Moretto P et al (2014) Natural antisense transcript for hyaluronan synthase 2 (HAS2-AS1) induces transcription of HAS2 via protein O-GlcNAcylation. J Biol Chem 289:28816–28826. https://doi.org/10.1074/jbc.M114.597401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea, under the “Regional Cooperation Innovative Growth R&D Program (R&D, P0021579)” supervised by the Korea Institute for Advancement of Technology (KIAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa Sung Shin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.M., Woo, H.J., Jang, B.J. et al. Assessment of Damnacanthus major Siebold & Zucc callus for antioxidative and moisturizing capacities using an artificial skin alternative. Biotechnol Bioproc E (2024). https://doi.org/10.1007/s12257-024-00103-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12257-024-00103-8

Keywords

Navigation