Skip to main content
Log in

Microbial production of dextran using pineapple waste extract: a two-step statistical optimization of submerged fermentation conditions and structural characterization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A two-step optimization protocol was attempted to optimize the condition for dextran production from pineapple waste using Leuconostoc mesenteroides NCIM-2198. Response surface methodology, in combination with numerical optimization technique, was explored for this purpose. In the first step, the initial medium pH (6.5–7.5), incubation temperature (25–35 °C), and time (12–60 h) were optimized from 45 full factorial runs. The maximum dextran yield was estimated as 1.46 g·[100 mL]−1 while incubated at 29.2 °C for 57.2 h at an initial pH of 7.15. Further, sucrose concentration (2–10 g·[100 mL]−1) and culture volume (3–7 mL·[100 mL]−1) were optimized from 15 experimental runs. The maximum dextran yield (1.47 g·[100 mL]−1) was obtained at 7.6 g·[100 mL]−1 of sucrose with 3 mL·[100 mL]−1 of culture volume at the previously optimized fermented broth. The response surface models were validated to explain the interaction between factors affecting dextran yield. The structural characteristics of the exopolysaccharide were analyzed. Fourier-transform infrared spectra showed that the exopolysaccharide contains similar spectral peaks as that of standard dextran. Nuclear magnetic resonance spectroscopy confirms the exopolysaccharide was dextran with mainly α-1-6 glycosidic bonds. Scanning electron microscopy explained its porous structure, which would be useful in retaining water and thus giving texturizing and viscosifying properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Davidović S, Miljković M, Lazić V et al (2015) Impregnation of cotton fabric with silver nanoparticles synthesized by dextran isolated from bacterial species Leuconostoc mesenteroides T3. Carbohydr Polym 131:331–336. https://doi.org/10.1016/j.carbpol.2015.06.024

    Article  CAS  PubMed  Google Scholar 

  2. Amaretti A, Bottari B, Morreale F et al (2020) Potential prebiotic effect of a long-chain dextran produced by Weissella cibaria: an in vitro evaluation. Int J Food Sci Nutr 71:563–571. https://doi.org/10.1080/09637486.2019.1711026

    Article  CAS  PubMed  Google Scholar 

  3. Galli V, Venturi M, Cardone G et al (2021) In situ dextran synthesis by Weissella confusa Ck15 and Leuconostoc pseudomesenteroides DSM 20193 and their effect on chickpea sourdough bread. Int J Food Sci Technol 56:5277–5285. https://doi.org/10.1111/ijfs.15097

    Article  CAS  Google Scholar 

  4. Perri G, Coda R, Rizzello CG et al (2021) Sourdough fermentation of whole and sprouted lentil flours: in situ formation of dextran and effects on the nutritional, texture and sensory characteristics of white bread. Food Chem 355:129638. https://doi.org/10.1016/j.foodchem.2021.129638

    Article  CAS  PubMed  Google Scholar 

  5. Perri G, Rizzello CG, Ampollini M et al (2021) Bioprocessing of barley and lentil grains to obtain in situ synthesis of exopolysaccharides and composite wheat bread with improved texture and health properties. Foods 10:1489. https://doi.org/10.3390/foods10071489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang Y, Compaoré-Sérémé D, Sawadogo-Lingani H et al (2019) Influence of dextran synthesized in situ on the rheological, technological and nutritional properties of whole grain pearl millet bread. Food Chem 285:221–230. https://doi.org/10.1016/j.foodchem.2019.01.126

    Article  CAS  PubMed  Google Scholar 

  7. Wang Y, Sorvali P, Laitila A et al (2018) Dextran produced in situ as a tool to improve the quality of wheat-faba bean composite bread. Food Hydrocoll 84:396–405. https://doi.org/10.1016/j.foodhyd.2018.05.042

    Article  CAS  Google Scholar 

  8. Wang Y, Trani A, Knaapila A et al (2020) The effect of in situ produced dextran on flavour and texture perception of wholegrain sorghum bread. Food Hydrocoll 106:105913. https://doi.org/10.1016/j.foodhyd.2020.105913

    Article  CAS  Google Scholar 

  9. Wang Y, Xie C, Pulkkinen M et al (2022) In situ production of vitamin B12 and dextran in soya flour and rice bran: a tool to improve flavour and texture of B12-fortified bread. LWT 161:113407. https://doi.org/10.1016/j.lwt.2022.113407

    Article  CAS  Google Scholar 

  10. Seo ES, Lee JH, Cho JY et al (2004) Synthesis and characterization of fructooligosaccharides using levansucrase with a high concentration of sucrose. Biotechnol Bioprocess Eng 9:339–344. https://doi.org/10.1007/BF02933054

    Article  CAS  Google Scholar 

  11. Suryawanshi N, Naik S, Jujjawarapu SE (2022) Exopolysaccharides and their applications in food processing industries. Food Sci Appl Biotechnol 5:22–44. https://doi.org/10.30721/fsab2022.v5.i1.165

    Article  Google Scholar 

  12. Vettori MHPB, Franchetti SMM, Contiero J (2012) Structural characterization of a new dextran with a low degree of branching produced by Leuconostoc mesenteroides FT045B dextransucrase. Carbohydr Polym 88:1440–1444. https://doi.org/10.1016/j.carbpol.2012.02.048

    Article  CAS  Google Scholar 

  13. Santos M, Teixeira J, Rodrigues A (2000) Production of dextransucrase, dextran and fructose from sucrose using Leuconostoc mesenteroides NRRL B512(f). Biochem Eng J 4:177–188. https://doi.org/10.1016/S1369-703X(99)00047-9

    Article  CAS  Google Scholar 

  14. Kang HK, Nguyen TTH, Jeong HN et al (2014) Molecular cloning and characterization of a novel glucansucrase from Leuconostoc mesenteroides subsp. mesenteroides LM34. Biotechnol Bioprocess Eng 19:605–612. https://doi.org/10.1007/s12257-014-0116-3

    Article  CAS  Google Scholar 

  15. Zafar SB, Siddiqui NN, Shahid F et al (2018) Bioprospecting of indigenous resources for the exploration of exopolysaccharide producing lactic acid bacteria. J Genet Eng Biotechnol 16:17–22. https://doi.org/10.1016/j.jgeb.2017.10.015

    Article  PubMed  Google Scholar 

  16. Du R, Pei F, Kang J et al (2022) Analysis of the structure and properties of dextran produced by Weissella confusa. Int J Biol Macromol 204:677–684. https://doi.org/10.1016/j.ijbiomac.2022.02.038

    Article  CAS  PubMed  Google Scholar 

  17. Zhu T, Hu B, Ye C et al (2022) Bletilla striata oligosaccharides improve ulcerative colitis by regulating gut microbiota and intestinal metabolites in dextran sulfate sodium-induced mice. Front Pharmacol 13:867525. https://doi.org/10.3389/fphar.2022.867525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korakli M, Gänzle MG, Vogel RF (2002) Metabolism by bifidobacteria and lactic acid bacteria of polysaccharides from wheat and rye, and exopolysaccharides produced by Lactobacillus sanfranciscensis. J Appl Microbiol 92:958–965. https://doi.org/10.1046/j.1365-2672.2002.01607.x

    Article  CAS  PubMed  Google Scholar 

  19. Torres-Rodríguez I, Rodríguez-Alegría ME, Miranda-Molina A et al (2014) Screening and characterization of extracellular polysaccharides produced by Leuconostoc kimchii isolated from traditional fermented pulque beverage. Springerplus 3:583. https://doi.org/10.1186/2193-1801-3-583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Han J, Hang F, Guo B et al (2014) Dextran synthesized by Leuconostoc mesenteroides BD1710 in tomato juice supplemented with sucrose. Carbohydr Polym 112:556–562. https://doi.org/10.1016/j.carbpol.2014.06.035

    Article  CAS  PubMed  Google Scholar 

  21. Tsuchiya HM, Koepsell HJ, Corman J et al (1952) The effect of certain cultural factors on production of dextransucrase by Leuconostoc mesenteroides. J Bacteriol 64:521–526. https://doi.org/10.1128/jb.64.4.521-526.1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rodrigues LR, Teixeira JA, Oliveira R (2006) Low-cost fermentative medium for biosurfactant production by probiotic bacteria. Biochem Eng J 32:135–142. https://doi.org/10.1016/j.bej.2006.09.012

    Article  CAS  Google Scholar 

  23. Lule V, Singh R, Behare P et al (2015) Comparison of exopolysaccharide production by indigenous Leuconostoc mesenteroides strains in whey medium. Asian J Dairy Food Res 34:8–12. https://doi.org/10.5958/0976-0563.2015.00002.0

    Article  Google Scholar 

  24. Lule VK, Singh R, Pophaly SD et al (2016) Production and structural characterisation of dextran from an indigenous strain of Leuconostoc mesenteroides BA08 in Whey. Int J Dairy Technol 69:520–531. https://doi.org/10.1111/1471-0307.12271

    Article  CAS  Google Scholar 

  25. Santos M, Rodrigues A, Teixeira JA (2005) Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f). Biochem Eng J 25:1–6. https://doi.org/10.1016/j.bej.2005.01.022

    Article  CAS  Google Scholar 

  26. Moosavi-Nasab M, Gavahian M, Yousefi AR et al (2010) Fermentative production of dextran using food industry wastes. World Acad Eng Technol 68:875–877

    Google Scholar 

  27. Woo S, Moon JH, Sung J et al (2022) Recent advances in the utilization of brown macroalgae as feedstock for microbial biorefinery. Biotechnol Bioprocess Eng 27:879–889. https://doi.org/10.1007/s12257-022-0301-8

    Article  CAS  Google Scholar 

  28. Huang SX, Hou DZ, Qi PX et al (2019) Efficacy of neutral electrolyzed water for reducing Leuconostoc mesenteroides in sugarcane mixed juice. Sugar Tech 21:986–994. https://doi.org/10.1007/s12355-019-00723-y

    Article  CAS  Google Scholar 

  29. Upadhyay A, Lama JP, Tawata S (2010) Utilization of pineapple waste: a review. J Food Sci Technol Nepal 6:10–18. https://doi.org/10.3126/jfstn.v6i0.8255

    Article  Google Scholar 

  30. Ketnawa S, Chaiwut P, Rawdkuen S (2012) Pineapple wastes: a potential source for bromelain extraction. Food Bioprod Process 90:385–391. https://doi.org/10.1016/j.fbp.2011.12.006

    Article  CAS  Google Scholar 

  31. Kumar D, Jain VK, Shanker G et al (2003) Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem 38:1725–1729. https://doi.org/10.1016/S0032-9592(02)00253-4

    Article  CAS  Google Scholar 

  32. Nor MZM, Ramchandran L, Duke M et al (2015) Characteristic properties of crude pineapple waste extract for bromelain purification by membrane processing. J Food Sci Technol 52:7103–7112. https://doi.org/10.1007/s13197-015-1812-5

    Article  CAS  Google Scholar 

  33. Mohd Zain NA, Mohd Suardi S, Idris A (2010) Hydrolysis of liquid pineapple waste by invertase immobilized in PVA–alginate matrix. Biochem Eng J 50:83–89. https://doi.org/10.1016/j.bej.2010.02.009

    Article  CAS  Google Scholar 

  34. Liu J, Luo J, Ye H et al (2010) Medium optimization and structural characterization of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 79:206–213. https://doi.org/10.1016/j.carbpol.2009.07.055

    Article  CAS  Google Scholar 

  35. Sharma A, Satyanarayana T (2011) Optimization of medium components and cultural variables for enhanced production of acidic high maltose-forming and Ca2+-independent α-amylase by Bacillus acidicola. J Biosci Bioeng 111:550–553. https://doi.org/10.1016/j.jbiosc.2011.01.004

    Article  CAS  PubMed  Google Scholar 

  36. Kanimozhi J, Moorthy IG, Sivashankar R et al (2017) Optimization of dextran production by Weissella cibaria NITCSK4 using response surface methodology-genetic algorithm based technology. Carbohydr Polym 174:103–110. https://doi.org/10.1016/j.carbpol.2017.06.021

    Article  CAS  PubMed  Google Scholar 

  37. Majumder A, Singh A, Goyal A (2009) Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization. Carbohydr Polym 75:150–156. https://doi.org/10.1016/j.carbpol.2008.07.014

    Article  CAS  Google Scholar 

  38. Majumder A, Goyal A (2008) Enhanced production of exocellular glucansucrase from Leuconostoc dextranicum NRRL B-1146 using response surface method. Bioresour Technol 99:3685–3691. https://doi.org/10.1016/j.biortech.2007.07.027

    Article  CAS  PubMed  Google Scholar 

  39. Dailin DJ, Selvamani S, Michelle K et al (2022) Production of high-value added exopolysaccharide by biotherapeutic potential Lactobacillus reuteri strain. Biochem Eng J 188:108691. https://doi.org/10.1016/j.bej.2022.108691

    Article  CAS  Google Scholar 

  40. Ranganna S (2005) Handbook of analysis and quality control for fruit and vegetable products. Tata McGraw-Hill, New Delhi

    Google Scholar 

  41. Wingender J, Neu TR, Flemming HC (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances. Springer, Berlin

  42. More TT, Yadav JSS, Yan S et al (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manage 144:1–25. https://doi.org/10.1016/j.jenvman.2014.05.010

    Article  CAS  PubMed  Google Scholar 

  43. Yáñez-Fernández J, Herrera Ovando MG, Patlán Ramírez L et al (2021) Factorial design to optimize dextran production by the native strain Leuconostoc mesenteroides SF3. ACS Omega 6:31203–31210. https://doi.org/10.1021/acsomega.1c04856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vedyashkina TA, Revin VV, Gogotov IN (2005) Optimizing the conditions of dextran synthesis by the bacterium Leuconostoc mesenteroides grown in a molasses-containing medium. Appl Biochem Microbiol 41:361–364. https://doi.org/10.1007/s10438-005-0061-1

    Article  CAS  Google Scholar 

  45. Wan H, Yuan J, Shan X et al (2011) Structure and bio-properties of extracellular polysaccharide from Bacillus sp. strain LBP32 Isolated from LUOBOPO desert. Biotechnol Bioprocess Eng 16:761–768. https://doi.org/10.1007/s12257-010-0456-6

    Article  CAS  Google Scholar 

  46. He Y, Liu C, Chen Y et al (2007) Isolation and structural characterization of a novel polysaccharide prepared from Arca subcrenata Lischke. J Biosci Bioeng 104:111–116. https://doi.org/10.1263/jbb.104.111

    Article  CAS  PubMed  Google Scholar 

  47. Zhao D, Jiang J, Liu L et al (2021) Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications. Int J Biol Macromol 178:306–315. https://doi.org/10.1016/j.ijbiomac.2021.02.182

    Article  CAS  PubMed  Google Scholar 

  48. Hemalatha R, Anbuselvi S (2013) Physicohemical constituents of pineapple pulp and waste. J Chem Pharm Res 5:240–242

    CAS  Google Scholar 

  49. Sairi M, Law JY, Sarmidi MR (2004) Chemical composition and sensory analysis of fresh pineapple juice and deacidified pineapple juice using electrodialysis. Universiti Teknologi Malaysia.

  50. Hu Y, Gänzle MG (2018) Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M. Int J Food Microbiol 280:27–34. https://doi.org/10.1016/j.ijfoodmicro.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  51. Shah N, Jelen P (1990) Survival of lactic acid bacteria and their lactases under acidic conditions. J Food Sci 55:506–509. https://doi.org/10.1111/j.1365-2621.1990.tb06797.x

    Article  CAS  Google Scholar 

  52. Mahapatra S, Banerjee D (2013) Optimization of a bioactive exopolysaccharide production from endophytic Fusarium solani SD5. Carbohydr Polym 97:627–634. https://doi.org/10.1016/j.carbpol.2013.05.039

    Article  CAS  PubMed  Google Scholar 

  53. Rao TJM, Goyal A (2013) A novel high dextran yielding Weissella cibaria JAG8 for cereal food application. Int J Food Sci Nutr 64:346–354. https://doi.org/10.3109/09637486.2012.734289

    Article  CAS  PubMed  Google Scholar 

  54. Sarwat F, Ul Qader SA, Aman A et al (2008) Production & characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 4:379–386. https://doi.org/10.7150/ijbs.4.379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu J, Luo J, Ye H et al (2009) Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym 78:275–281. https://doi.org/10.1016/j.carbpol.2009.03.046

    Article  CAS  Google Scholar 

  56. Majumder A, Bhandari S, Purama RK et al (2009) Enhanced production of a novel dextran from Leuconostoc mesenteroides NRRL B-640 by response surface methodology. Ann Microbiol 59:309–315. https://doi.org/10.1007/BF03178333

    Article  CAS  Google Scholar 

  57. Kim HO, Lim JM, Joo JH et al (2005) Optimization of submerged culture condition for the production of mycelial biomass and exopolysaccharides by Agrocybe cylindracea. Bioresour Technol 96:1175–1182. https://doi.org/10.1016/j.biortech.2004.09.021

    Article  CAS  PubMed  Google Scholar 

  58. Naessens M, Cerdobbel A, Soetaert W et al (2005) Leuconostoc dextransucrase and dextran: production, properties and applications. J Chem Technol Biotechnol 80:845–860. https://doi.org/10.1002/jctb.1322

    Article  CAS  Google Scholar 

  59. Zhou Q, Feng F, Yang Y et al (2018) Characterization of a dextran produced by Leuconostoc pseudomesenteroides XG5 from homemade wine. Int J Biol Macromol 107:2234–2241. https://doi.org/10.1016/j.ijbiomac.2017.10.098

    Article  CAS  PubMed  Google Scholar 

  60. Feng F, Zhou Q, Yang Y et al (2018) Characterization of highly branched dextran produced by Leuconostoc citreum B-2 from pineapple fermented product. Int J Biol Macromol 113:45–50. https://doi.org/10.1016/j.ijbiomac.2018.02.119

    Article  CAS  PubMed  Google Scholar 

  61. Singha TK (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2:276–281

    Google Scholar 

  62. Du R, Xing H, Yang Y et al (2017) Optimization, purification and structural characterization of a dextran produced by L. mesenteroides isolated from Chinese sauerkraut. Carbohydr Polym 174:409–416. https://doi.org/10.1016/j.carbpol.2017.06.084

    Article  CAS  PubMed  Google Scholar 

  63. Esmaeilnejad-Moghadam B, Mokarram RR, Hejazi MA et al (2019) Low molecular weight dextran production by Leuconostoc mesenteroides strains: optimization of a new culture medium and the rheological assessments. Bioact Carbohydrates Diet Fibre 18:100181. https://doi.org/10.1016/j.bcdf.2019.100181

    Article  CAS  Google Scholar 

  64. Du R, Xing H, Zhou Z et al (2017) Isolation, characterisation and fermentation optimisation of glucansucrase-producing Leuconostoc mesenteroides DRP105 from sauerkraut with improved preservation stability. Int J Food Sci Technol 52:2522–2530. https://doi.org/10.1111/ijfs.13537

    Article  CAS  Google Scholar 

  65. Coates J. (2000) Interpretation of infrared spectra, a practical approach. In: Meyers RA, McKelvy ML (eds) Encyclopedia of analytical chemistry. Wiley, pp 10815–10837

  66. Siddiqui NN, Aman A, Silipo A et al (2014) Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr Polym 99:331–338. https://doi.org/10.1016/j.carbpol.2013.08.004

    Article  CAS  PubMed  Google Scholar 

  67. Yu Y, Wu J, Xu Y et al (2018) The effect of litchi juice on exopolysaccharide production in milk fermented by Lactobacillus casei. Int J Food Sci Technol 53:2730–2737. https://doi.org/10.1111/ijfs.13884

    Article  CAS  Google Scholar 

  68. Li C, Ding J, Chen D et al (2020) Bioconversion of cheese whey into a hetero-exopolysaccharide via a one-step bioprocess and its applications. Biochem Eng J 161:107701. https://doi.org/10.1016/j.bej.2020.107701

    Article  CAS  Google Scholar 

  69. Güner A, Akman Ö, Rzaev ZMO (2001) Crosslinking of dextran with some selective Cl-, P- and N-containing functional substances in aqueous solutions. React Funct Polym 47:55–65. https://doi.org/10.1016/S1381-5148(00)00072-9

    Article  Google Scholar 

  70. Shrivastava A (2018) Polymerization. In: Shrivastava A (ed) Introduction to plastics engineering. William Andrew, New York

  71. Yu YJ, Chen Z, Chen PT et al (2018) Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J Biosci Bioeng 126:769–777. https://doi.org/10.1016/j.jbiosc.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  72. Yilmaz MT, İspirli H, Taylan O et al (2022) Structural and bioactive characteristics of a dextran produced by Lactobacillus kunkeei AK1. Int J Biol Macromol 200:293–302. https://doi.org/10.1016/j.ijbiomac.2022.01.012

    Article  CAS  PubMed  Google Scholar 

  73. Yilmaz MT, İspirli H, Alidrisi H et al (2023) Characterisation of dextran AP-27 produced by bee pollen isolate Lactobacillus kunkeei AP-27. Process Biochem 129:22–29. https://doi.org/10.1016/j.procbio.2023.03.007

    Article  CAS  Google Scholar 

  74. Aburas H, İspirli H, Taylan O et al (2020) Structural and physicochemical characterisation and antioxidant activity of an α-D-glucan produced by sourdough isolate Weissella cibaria MED17. Int J Biol Macromol 161:648–655. https://doi.org/10.1016/j.ijbiomac.2020.06.030

    Article  CAS  PubMed  Google Scholar 

  75. Ahmed RZ, Siddiqui K, Arman M et al (2012) Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr Polym 90:441–446. https://doi.org/10.1016/j.carbpol.2012.05.063

    Article  CAS  PubMed  Google Scholar 

  76. Netsopa S, Niamsanit S, Sakloetsakun D et al (2018) Characterization and rheological behavior of dextran from Weissella confusa R003. Int J Polym Sci 2018:5790526. https://doi.org/10.1155/2018/5790526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Council of Scientific and Industrial Research (CSIR) HRDG-EMR-II with File No. 22(0845)/20/EMR-II dt. 10/12/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snehasis Chakraborty.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tripathy, A., Patel, M.K. & Chakraborty, S. Microbial production of dextran using pineapple waste extract: a two-step statistical optimization of submerged fermentation conditions and structural characterization. Biotechnol Bioproc E 29, 387–403 (2024). https://doi.org/10.1007/s12257-024-00002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-024-00002-y

Keywords

Navigation