Skip to main content
Log in

Stability Enhancement of Target Enzymes via Tyrosinase-Mediated Site-Specific Polysaccharide Coating

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Enzymes are widely used in industrial and pharmaceutical applications, but their activities often decrease rapidly under harsh environmental conditions such as heat, organic solvents, and dehydration. In this study, a new method for enzyme coating with polysaccharide using a rapid tyrosinase-mediated crosslinking reaction was developed. When tyrosinase reacts with a monophenol-containing biopolymer such as polysaccharide, it forms a covalent crosslink between the biopolymer and the enzyme. This crosslinking reaction create a rigid polysaccharide-coated enzyme (PCE) that protects the enzyme from harsh environmental conditions, that leads to improve the enzyme stability. To demonstrate the concept, trypsin (TR), a model enzyme with a positively charged surface, was used. Tyramine conjugated alginate polymer (AlgT), a negatively charged biocompatible polysaccharide, was used to coat TR. The AlgT was subsequently used to coat TR, forming an AlgT-TR complex. We characterized the PCE using particle size, surface charge (zeta potential), optimal pH shift, etc. Afterwards, we compared the enzyme kinetics of AlgT-TR and uncoated TR (free-TR). The AlgT-TR showed a higher activity and higher heat, storage, and water-miscible organic solvent stabilities than the free-TR. The AlgT coating method was efficient and effective to increase the thermal stability of not only TR, but also hydrolases with neutral to negative surface charges, such as elastase, subtilisin, and chymotrypsin. These results suggest that the tyrosinase-mediated crosslinking reaction is a very promising and general coating method for improving the stability of enzymes with positive surface charge, but the opposite case would be also possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Silva, C., M. Martins, S. Jing, J. Fu, and A. Cavaco-Paulo (2018) Practical insights on enzyme stabilization. Crit. Rev. Biotechnol. 38: 335–350.

    Article  CAS  PubMed  Google Scholar 

  2. Upadhyay, R., J. Y. Kim, E. Y. Hong, S.-G. Lee, J.-H. Seo, and B.-G. Kim (2019) RiSLnet: rapid identification of smart mutant libraries using protein structure network. Application to thermal stability enhancement. Biotechnol. Bioeng. 116: 250–259.

    Article  CAS  PubMed  Google Scholar 

  3. Razzaghi, M., A. Homaei, F. Vianello, T. Azad, T. Sharma, A. K. Nadda, R. Stevanato, M. Bilal, and H. M. N. Iqbal (2022) Industrial applications of immobilized nano-biocatalysts. Bioprocess Biosyst. Eng. 45: 237–256.

    Article  CAS  PubMed  Google Scholar 

  4. Rodriguez-Abetxuko, A., D. Sánchez-deAlcázar, P. Muñumer, and A. Beloqui (2020) Tunable polymeric scaffolds for enzyme immobilization. Front. Bioeng. Biotechnol. 8: 830.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chapman, R. and M. H. Stenzel (2019) All wrapped up: stabilization of enzymes within single enzyme nanoparticles. J. Am. Chem. Soc. 141: 2754–2769.

    Article  CAS  PubMed  Google Scholar 

  6. Beloqui, A., A. Y. Kobitski, G. U. Nienhaus, and G. Delaittre (2018) A simple route to highly active single-enzyme nanogels. Chem. Sci. 9: 1006–1013.

    Article  CAS  PubMed  Google Scholar 

  7. Kim, J. and J. W. Grate (2003) Single-enzyme nanoparticles armored by a nanometer-scale organic/inorganic network. Nano Lett. 3: 1219–1222.

    Article  CAS  Google Scholar 

  8. Wang, Y., Y. T. Cheng, C. Cao, J. D. Oliver, M. H. Stenzel, and R. Chapman (2020) Polyion complex-templated synthesis of cross-linked single-enzyme nanoparticles. Macromolecules 53: 5487–5496.

    Article  CAS  Google Scholar 

  9. Wang, Y., M. Milewska, H. Foster, R. Chapman, and M. H. Stenzel (2021) The core–shell structure, not sugar, drives the thermal stabilization of single-enzyme nanoparticles. Biomacromolecules 22: 4569–4581.

    Article  CAS  PubMed  Google Scholar 

  10. Agunbiade, M. and M. Le Roes-Hill (2021) Application of bacterial tyrosinases in organic synthesis. World J. Microbiol. and Biotechnol. 38: 2.

    Article  Google Scholar 

  11. Kim, H., U.-J. Lee, H. Song, J. Lee, W.-S. Song, H. Noh, M.-H. Kang, B.-S. Kim, J. Park, N. S. Hwang, and B.-G. Kim (2022) Synthesis of soluble melanin nanoparticles under acidic conditions using Burkholderia cepacia tyrosinase and their characterization. RSC Adv. 12: 17434–17442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liebscher, J.(2019) Chemistry of polydopamine–scope, variation, and limitation. Eur. J. Org. Chem. 2019: 4976–4994.

  13. Fujieda, N., K. Umakoshi, Y. Ochi, Y. Nishikawa, S. Yanagisawa, M. Kubo, G. Kurisu, and S. Itoh (2020) Copper-oxygen dynamics in tyrosinase mechanism. Angew. Chem. Int. Ed. Engl. 59: 13385–13390.

    Article  CAS  PubMed  Google Scholar 

  14. Kim, S.-H., S.-H. Lee, J.-E. Lee, S. J. Park, K. Kim, I. S. Kim, Y.-S. Lee, N. S. Hwang, and B.-G. Kim (2018) Tissue adhesive, rapid forming, and sprayable ECM hydrogel via recombinant tyrosinase crosslinking. Biomaterials 178: 401–412.

    Article  CAS  PubMed  Google Scholar 

  15. Lee, N., S.-H. Lee, K. Baek, and B.-G. Kim (2015) Heterologous expression of tyrosinase (MelC2) from Streptomyces avermitilis MA4680 in E. coli and its application for ortho-hydroxylation of resveratrol to produce piceatannol. Appl. Microbiol. Biotechnol. 99: 7915–7924.

    Article  CAS  PubMed  Google Scholar 

  16. Chamorro, J. A., J. A. Cuesta-Seijo, and S. Garcia-Granda. Pancratic bovine Trypsin native and inhibited with Benzamidine from synchotron data. https://www.rcsb.org/structure/1s0r

  17. Sakai, S., Y. Yamada, T. Zenke, and K. Kawakami (2009) Novel chitosan derivative soluble at neutral pH and in-situ gellable via peroxidase-catalyzed enzymatic reaction. J. Mater. Chem. 19: 230–235.

    Article  CAS  Google Scholar 

  18. Han, J., Y. Cui, X. Han, C. Liang, W. Liu, D. Luo, and D. Yang (2020) Super-soft DNA/dopamine-grafted-dextran hydrogel as dynamic wire for electric circuits switched by a microbial metabolism process. Adv. Sci. (Weinh) 7: 2000684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, P.-G., S.-H. Lee, E. Y. Hong, S. Lutz, and B.-G. Kim (2019) Circular permutation of a bacterial tyrosinase enables efficient polyphenol-specific oxidation and quantitative preparation of orobol. Biotechnol. Bioeng. 116: 19–27.

    Article  CAS  PubMed  Google Scholar 

  20. Huynh, K. and C. L. Partch (2015) Analysis of protein stability and ligand interactions by thermal shift assay. Curr. Protoc Protein Sci. 79: 28.9.1–28.9.14.

    Article  PubMed  Google Scholar 

  21. Magari, R. T. (2002) Estimating degradation in real time and accelerated stability tests with random lot-to-lot variation: a simulation study. J. Pharm Sci. 91: 893–899.

    Article  CAS  PubMed  Google Scholar 

  22. Unni, S., Y. Huang, R. M. Hanson, M. Tobias, S. Krishnan, W. W. Li, J. E. Nielsen, and N. A. Baker (2011) Web servers and services for electrostatics calculations with APBS and PDB2PQR. J. Comput. Chem. 32: 1488–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pettersen, E. F., T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25: 1605–1612.

    Article  CAS  PubMed  Google Scholar 

  24. Jablaoui, A., A. Kriaa, N. Akermi, H. Mkaouar, A. Gargouri, E. Maguin, and M. Rhimi (2018) Biotechnological applications of serine proteases: a patent review. Recent Pat. Biotechnol. 12: 280–287.

    Article  CAS  PubMed  Google Scholar 

  25. Walsh, K. A. (1970) [4] Trypsinogens and trypsins of various species. pp. 41–63. Methods in Enzymology. Elsevier.

  26. Lv, Y., J. Zhang, Y. Song, B. Wang, S. Wang, S. Zhao, G. Lv, and X. Ma (2014) Natural anionic polymer acts as highly efficient trypsin inhibitor based on an electrostatic interaction mechanism. Macromol. Rapid Commun. 35: 1606–1610.

    Article  CAS  PubMed  Google Scholar 

  27. Quiñones, J. P., H. Peniche, and C. Peniche (2018) Chitosan based self-assembled nanoparticles in drug delivery. Polymers (Basel) 10: 235.

    Article  PubMed  Google Scholar 

  28. Yuan, H., W. M. Mullett, and J. Pawliszyn (2001) Biological sample analysis with immunoaffinity solid-phase microextraction. Analyst 126: 1456–1461.

    Article  CAS  PubMed  Google Scholar 

  29. Thiele, M. J., M. D. Davari, M. König, I. Hofmann, N. O. Junker, T. Mirzaei Garakani, L. Vojcic, J. Fitter, and U. Schwaneberg (2018) Enzyme–polyelectrolyte complexes boost the catalytic performance of enzymes. ACS Catal. 8: 10876–10887.

    Article  Google Scholar 

  30. Stepankova, V., S. Bidmanova, T. Koudelakova, Z. Prokop, R. Chaloupkova, and J. Damborsky (2013) Strategies for stabilization of enzymes in organic solvents. ACS Catal. 3: 2823–2836.

    Article  CAS  Google Scholar 

  31. Würtele, M., M. Hahn, K. Hilpert, and W. Höhne (2000) Atomic resolution structure of native porcine pancreatic elastase at 1.1 Å. Acta. Crystallogr. D Biol. Crystallogr. 56: 520–523.

    Article  PubMed  Google Scholar 

  32. Prangé, T., M. Schiltz, L. Pernot, N. Colloc’h, S. Longhi, W. Bourguet, and R. Fourme (1998) Exploring hydrophobic sites in proteins with xenon or krypton. Proteins 30: 61–73.

    Article  PubMed  Google Scholar 

  33. Tornøe, C. W., E. Johansson, and P.-O. Wahlund (2017) Divergent protein synthesis of Bowman–Birk protease inhibitors, their hydrodynamic behavior and co-crystallization with α-chymotrypsin. Synlett 28: 1901–1906.

    Article  Google Scholar 

  34. Barker, M. K. and D. R. Rose (2013) Specificity of processing α-glucosidase I is guided by the substrate conformation: crystallographic and in silico studies. J. Biol. Chem. 288: 13563–13574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Saini, A. S., A. Tripathi, and J. S. Melo (2015) On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly(AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties. RSC Adv. 5: 87206–87215.

    Article  CAS  Google Scholar 

  36. Kim, D. H., H. S. Lee, T.-W. Kwon, Y.-M. Han, N.-W. Kang, M. Y. Lee, D.-D. Kim, M. G. Kim, and J.-Y. Lee (2020) Single enzyme nanoparticle, an effective tool for enzyme replacement therapy. Arch. Pharm.l Res. 43: 1–21.

    Article  Google Scholar 

  37. Kim, H. (2022) Soluble Melanin Synthesis and Enzyme Coating Using Tyrosinase Catalyzed Reaction. Ph.D. Thesis. Seoul National University, Seoul, Korea.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Korea Initiative for fostering University of Research and Innovation Program of the National Research Foundation (NRF) funded by the Korean government (MSIT) (No. NRF-2020M3H1A1073304).

This work was also supported by the Korea Planning & Evaluation of Industrial Technology (20024336) funded by the Ministry of Trade, Industry & Energy (MOTTE, Republic of Korea).

This paper is based on the doctoral dissertation [37] submitted by Dr. Hyun Kim to Seoul National University in August 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byung-Gee Kim.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Lee, UJ., Lim, GM. et al. Stability Enhancement of Target Enzymes via Tyrosinase-Mediated Site-Specific Polysaccharide Coating. Biotechnol Bioproc E 28, 862–873 (2023). https://doi.org/10.1007/s12257-023-0190-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0190-5

Keywords

Navigation