Skip to main content

Advertisement

Log in

Chinese Hamster Ovary Cell Line Instability: Causes, Mitigation, and Prediction

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cell line instability is a common problem in biopharmaceutical manufacturing using Chinese hamster ovary (CHO) cells. Cell line instability, which refers to unintended and unpredicted genetic, epigenetic, and phenotypic changes over time, can increase production costs and threaten sales approval by reducing product quantity and quality. While a stability test is conducted to screen cell lines with stable transgene expression, this process requires several months, delaying the entire drug development timeline. To accelerate timeline for drug development, understanding, mitigation, and prediction of cell line instability are critical. In this review, we update recent research progresses regarding instability-inducing biological mechanisms and alleviating the intrinsic instability of CHO cells. We also discuss studies that contribute to predicting irregular phenotypic changes in recombinant protein-producing CHO cell lines, based on omics-based studies. These prediction strategies will contribute to complementing current instability alleviating strategies, thereby saving labor, cost, and time for the cell line development process as well as providing a comprehensive understanding of CHO cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Walsh, G. and E. Walsh (2022) Biopharmaceutical benchmarks 2022. Nat. Biotechnol. 40: 1722–1760.

    CAS  Google Scholar 

  2. Wu, S., A. J. Rish, A. Skomo, Y. Zhao, J. K. Drennen, and C. A. Anderson (2021) Rapid serum-free/suspension adaptation: medium development using a definitive screening design for Chinese hamster ovary cells. Biotechnol. Prog. 37: e3154.

    CAS  PubMed  Google Scholar 

  3. Huang, Y.-M., W. Hu, E. Rustandi, K. Chang, H. Yusuf-Makagiansar, and T. Ryll (2010) Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 26: 1400–1410.

    Article  CAS  PubMed  Google Scholar 

  4. Tihanyi, B. and L. Nyitray (2020) Recent advances in CHO cell line development for recombinant protein production. Drug Discov. Today Technol. 38: 25–34.

    Article  PubMed  Google Scholar 

  5. Zhang, Q., B. Jiang, L. Nelson, S. Huhn, Z. Du, and L. A. Chasin (2022) A multiauxotrophic CHO cell line for the rapid isolation of producers of diverse or high levels of recombinant proteins. Biotechnol. Bioeng. 119: 1392–1404.

    Article  CAS  PubMed  Google Scholar 

  6. Berting, A., M. R. Farcet, and T. R. Kreil (2010) Virus susceptibility of Chinese hamster ovary (CHO) cells and detection of viral contaminations by adventitious agent testing. Biotechnol. Bioeng. 106: 598–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Butler, M. and M. Spearman (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30: 107–112.

    Article  CAS  PubMed  Google Scholar 

  8. Lalonde, M.-E. and Y. Durocher (2017) Therapeutic glycoprotein production in mammalian cells. J. Biotechnol. 251: 128–140.

    Article  CAS  PubMed  Google Scholar 

  9. Kelley, B. (2020) Developing therapeutic monoclonal antibodies at pandemic pace. Nat. Biotechnol. 38: 540–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kunert, R. and D. Reinhart (2016) Advances in recombinant antibody manufacturing. Appl. Microbiol. Biotechnol. 100: 3451–3461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dumont, J., D. Euwart, B. Mei, S. Estes, and R. Kshirsagar (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit. Rev. Biotechnol. 36:1110–1122.

    Article  CAS  PubMed  Google Scholar 

  12. Welch, J. T. and N. S. Arden (2019) Considering “clonality”: a regulatory perspective on the importance of the clonal derivation of mammalian cell banks in biopharmaceutical development. Biologicals 62: 16–21.

    Article  CAS  PubMed  Google Scholar 

  13. Dahodwala, H. and K. H. Lee (2019) The fickle CHO: a review of the causes, implications, and potential alleviation of the CHO cell line instability problem. Curr. Opin. Biotechnol. 60: 128–137.

    Article  CAS  PubMed  Google Scholar 

  14. Dorai, H., S. Corisdeo, D. Ellis, C. Kinney, M. Chomo, P. Hawley-Nelson, G. Moore, M. J. Betenbaugh, and S. Ganguly (2012) Early prediction of instability of Chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol. Bioeng. 109: 1016–1030.

    Article  CAS  PubMed  Google Scholar 

  15. Wurm, F. M. and M. J. Wurm (2017) Cloning of CHO cells, productivity and genetic stability—a discussion. Processes 5: 20.

    Article  Google Scholar 

  16. Baik, J. Y. and K. H. Lee (2017) A framework to quantify karyotype variation associated with CHO cell line instability at a single-cell level. Biotechnol. Bioeng. 114: 1045–1053.

    Article  CAS  PubMed  Google Scholar 

  17. Mizrahi, R. A., W. Y. Lin, A. Gras, A. R. Niedecken, E. K. Wagner, S. M. Keating, N. Ikon, V. A. Manickam, M. A. Asensio, J. Leong, A. V. Medina-Cucurella, E. Benzie, K. P. Carter, Y. Chiang, R. C. Edgar, R. Leong, Y. W. Lim, J. F. Simons, M. J. Spindler, K. Stadtmiller, N. Wayham, D. Büscher, J. V. Terencio, C. D. Germanio, S. M. Chamow, C. Olson, P. A. Pino, J.-G. Park, A. Hicks, C. Ye, A. Garcia-Vilanova, L. Martinez-Sobrido, J. B. Torrelles, D. S. Johnson, and A. S. Adler (2022) GMP manufacturing and IND-enabling studies of a recombinant hyperimmune globulin targeting SARS-CoV-2. Pathogens 11: 806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Torres, M., Z. Betts, R. Scholey, M. Elvin, S. Place, A. Hayes, and A. J. Dickson (2023) Long term culture promotes changes to growth, gene expression, and metabolism in CHO cells that are independent of production stability. Biotechnol. Bioeng.https://doi.org/10.1002/bit.28399

  19. Hong, J. K., M. Lakshmanan, C. Goudar, and D.-Y. Lee (2018) Towards next generation CHO cell line development and engineering by systems approaches. Curr. Opin. Chem. Eng. 22: 1–10.

    Article  Google Scholar 

  20. Vcelar, S., M. Melcher, N. Auer, A. Hrdina, A. Puklowski, F. Leisch, V. Jadhav, T. Wenger, M. Baumann, and N. Borth (2018) Changes in chromosome counts and patterns in CHO cell lines upon generation of recombinant cell lines and subcloning. Biotechnol. J. 13: e1700495.

    Article  PubMed  Google Scholar 

  21. Turilova, V. I., T. S. Goryachaya, and T. K. Yakovleva (2021) Chinese hamster ovary cell line DXB-11: chromosomal instability and karyotype heterogeneity. Mol. Cytogenet. 14: 11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lewis, N. E., X. Liu, Y. Li, H. Nagarajan, G. Yerganian, E. O’Brien, A. Bordbar, A. M. Roth, J. Rosenbloom, C. Bian, M. Xie, W. Chen, N. Li, D. Baycin-Hizal, H. Latif, J. Forster, M. J. Betenbaugh, I. Famili, X. Xu, J. Wang, and B. O. Palsson (2013) Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol. 31: 759–765.

    Article  CAS  PubMed  Google Scholar 

  23. Dhiman, H., M. P. Gerstl, D. Ruckerbauer, M. Hanscho, H. Himmelbauer, C. Clarke, N. Barron, J. Zanghellini, and N. Borth (2019) Genetic and epigenetic variation across genes involved in energy metabolism and mitochondria of Chinese hamster ovary cell lines. Biotechnol. J. 14: e1800681.

    Article  PubMed  Google Scholar 

  24. Wurm, F. M. and D. Hacker (2011) First CHO genome. Nat. Biotechnol. 29: 718–720.

    Article  CAS  PubMed  Google Scholar 

  25. Vcelar, S., V. Jadhav, M. Melcher, N. Auer, A. Hrdina, R. Sagmeister, K. Heffner, A. Puklowski, M. Betenbaugh, T. Wenger, F. Leisch, M. Baumann, and N. Borth (2018) Karyotype variation of CHO host cell lines over time in culture characterized by chromosome counting and chromosome painting. Biotechnol. Bioeng. 115: 165–173.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, X., H. Nagarajan, N. E. Lewis, S. Pan, Z. Cai, X. Liu, W. Chen, M. Xie, W. Wang, S. Hammond, M. R. Andersen, N. Neff, B. Passarelli, W. Koh, H. C. Fan, J. Wang, Y. Gui, K. H. Lee, M. J. Betenbaugh, S. R. Quake, I. Famili, B. O. Palsson, and J. Wang (2011) The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol. 29: 735–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaas, C. S., C. Kristensen, M. J. Betenbaugh, and M. R. Andersen (2015) Sequencing the CHO DXB11 genome reveals regional variations in genomic stability and haploidy. BMC Genomics 16:160.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cao, Y., S. Kimura, T. Itoi, K. Honda, H. Ohtake, and T. Omasa (2012) Construction of BAC-based physical map and analysis of chromosome rearrangement in Chinese hamster ovary cell lines. Biotechnol. Bioeng. 109: 1357–1367.

    Article  CAS  PubMed  Google Scholar 

  29. Reinhart, D., L. Damjanovic, C. Kaisermayer, W. Sommeregger, A. Gili, B. Gasselhuber, A. Castan, P. Mayrhofer, C. Grünwald-Gruber, and R. Kunert (2019) Bioprocessing of recombinant CHO-K1, CHO-DG44, and CHO-S: CHO expression hosts favor either mAb production or biomass synthesis. Biotechnol. J. 14: e1700686.

    Article  PubMed  Google Scholar 

  30. Bandyopadhyay, A. A., S. A. O’Brien, L. Zhao, H.-Y. Fu, N. Vishwanathan, and W.-S. Hu (2019) Recurring genomic structural variation leads to clonal instability and loss of productivity. Biotechnol. Bioeng. 116: 41–53.

    Article  CAS  PubMed  Google Scholar 

  31. Qian, Y., S. W. Sowa, K. L. Aron, P. Xu, E. Langsdorf, B. Warrack, N. Aranibar, G. Tremml, J. Xu, D. McVey, M. Reily, A. Khetan, M. C. Borys, and Z. J. Li (2020) New insights into genetic instability of an industrial CHO cell line by orthogonal omics. Biochem. Eng. J. 164: 107799.

    Article  CAS  Google Scholar 

  32. Veith, N., H. Ziehr, R. A. MacLeod, and S. M. Reamon-Buettner (2016) Mechanisms underlying epigenetic and transcriptional heterogeneity in Chinese hamster ovary (CHO) cell lines. BMC Biotechnol. 16: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moore, L. D., T. Le, and G. Fan (2013) DNA methylation and its basic function. Neuropsychopharmacology 38: 23–38.

    Article  CAS  PubMed  Google Scholar 

  34. Yang, Y., Mariati, J. Chusainow, and M. G. Yap (2010) DNA methylation contributes to loss in productivity of monoclonal antibody-producing CHO cell lines. J. Biotechnol. 147: 180–185.

    Article  CAS  PubMed  Google Scholar 

  35. Marx, N., P. Eisenhut, M. Weinguny, G. Klanert, and N. Borth (2022) How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol. Adv. 56: 107924.

    Article  CAS  PubMed  Google Scholar 

  36. Kim, M., P. M. O’Callaghan, K. A. Droms, and D. C. James (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol. Bioeng. 108: 2434–2446.

    Article  CAS  PubMed  Google Scholar 

  37. Osterlehner, A., S. Simmeth, and U. Göpfert (2011) Promoter methylation and transgene copy numbers predict unstable protein production in recombinant Chinese hamster ovary cell lines. Biotechnol. Bioeng. 108: 2670–2681.

    Article  CAS  PubMed  Google Scholar 

  38. Paredes, V., J. S. Park, Y. Jeong, J. Yoon, and K. Baek (2013) Unstable expression of recombinant antibody during long-term culture of CHO cells is accompanied by histone H3 hypoacetylation. Biotechnol. Lett. 35: 987–993.

    Article  CAS  PubMed  Google Scholar 

  39. Moritz, B., L. Woltering, P. B. Becker, and U. Göpfert (2016) High levels of histone H3 acetylation at the CMV promoter are predictive of stable expression in Chinese hamster ovary cells. Biotechnol. Prog. 32: 776–786.

    Article  CAS  PubMed  Google Scholar 

  40. Kaikkonen, M. U., M. T. Lam, and C. K. Glass (2011) Non-coding RNAs as regulators of gene expression and epigenetics. Cardiovasc. Res. 90: 430–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fernandes, J. C. R., S. M. Acuña, J. I. Aoki, L. M. Floeter-Winter, and S. M. Muxel (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 5: 17.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Vito, D., J. C. Eriksen, C. Skjødt, D. Weilguny, S. K. Rasmussen, and C. M. Smales (2020) Defining lncRNAs correlated with CHO cell growth and IgG productivity by RNA-seq. iScience 23:100785.

    Article  CAS  PubMed  Google Scholar 

  43. Motheramgari, K., R. Valdés-Bango Curell, I. Tzani, C. Gallagher, M. Castro-Rivadeneyra, L. Zhang, N. Barron, and C. Clarke (2020) Expanding the Chinese hamster ovary cell long noncoding RNA transcriptome using RNASeq. Biotechnol. Bioeng. 117: 3224–3231.

    Article  CAS  PubMed  Google Scholar 

  44. Vito, D. and C. M. Smales (2018) The long non-coding RNA transcriptome landscape in CHO cells under batch and fed-batch conditions. Biotechnol. J. 13: e1800122.

    Article  PubMed  Google Scholar 

  45. Urlaub, G., E. Käs, A. M. Carothers, and L. A. Chasin (1983) Deletion of the diploid dihydrofolate reductase locus from cultured mammalian cells. Cell 33: 405–412.

    Article  CAS  PubMed  Google Scholar 

  46. Fan, L., I. Kadura, L. E. Krebs, C. C. Hatfield, M. M. Shaw, and C. C. Frye (2012) Improving the efficiency of CHO cell line generation using glutamine synthetase gene knockout cells. Biotechnol. Bioeng. 109: 1007–1015.

    Article  CAS  PubMed  Google Scholar 

  47. Noh, S. M., S. Shin, and G. M. Lee (2018) Comprehensive characterization of glutamine synthetase-mediated selection for the establishment of recombinant CHO cells producing monoclonal antibodies. Sci. Rep. 8: 5361.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Kim, N. S., S. J. Kim, and G. M. Lee (1998) Clonal variability within dihydrofolate reductase-mediated gene amplified Chinese hamster ovary cells: stability in the absence of selective pressure. Biotechnol. Bioeng. 60: 679–688.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang, Z., Y. Huang, and S. T. Sharfstein (2006) Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression. Biotechnol. Prog. 22: 313–318.

    Article  CAS  PubMed  Google Scholar 

  50. Fann, C. H., F. Guirgis, G. Chen, M. S. Lao, and J. M. Piret (2000) Limitations to the amplification and stability of human tissue-type plasminogen activator expression by Chinese hamster ovary cells. Biotechnol. Bioeng. 69: 204–212.

    Article  CAS  PubMed  Google Scholar 

  51. Tharmalingam, T., H. Barkhordarian, N. Tejeda, K. Daris, S. Yaghmour, P. Yam, F. Lu, C. Goudar, T. Munro, and J. Stevens (2018) Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol. Prog. 34:613–623.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Spahn, P. N., X. Zhang, Q. Hu, H. Lu, N. K. Hamaker, H. Hefzi, S. Li, C.-C. Kuo, Y. Huang, J. C. Lee, A. J. Davis, P. Ly, K. H. Lee, and N. E. Lewis (2022) Restoration of DNA repair mitigates genome instability and increases productivity of Chinese hamster ovary cells. Biotechnol. Bioeng. 119: 963–982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ritter, A., B. Voedisch, J. Wienberg, B. Wilms, S. Geisse, T. Jostock, and H. Laux (2016) Deletion of a telomeric region on chromosome 8 correlates with higher productivity and stability of CHO cell lines. Biotechnol. Bioeng. 113: 1084–1093.

    Article  CAS  PubMed  Google Scholar 

  54. Ritter, A., S. Nuciforo, A. Schulze, M. Oertli, T. Rauschert, B. Voedisch, S. Geisse, T. Jostock, and H. Laux (2017) Fam60A plays a role for production stabilities of recombinant CHO cell lines. Biotechnol. Bioeng. 114: 701–704.

    Article  CAS  PubMed  Google Scholar 

  55. Ritter, A., T. Rauschert, M. Oertli, D. Piehlmaier, P. Mantas, G. Kuntzelmann, N. Lageyre, B. Brannetti, B. Voedisch, S. Geisse, T. Jostock, and H. Laux (2016) Disruption of the gene C12orf35 leads to increased productivities in recombinant CHO cell lines. Biotechnol. Bioeng. 113: 2433–2442.

    Article  CAS  PubMed  Google Scholar 

  56. Marx, N., C. Grünwald-Gruber, N. Bydlinski, H. Dhiman, L. Ngoc Nguyen, G. Klanert, and N. Borth (2018) CRISPR-based targeted epigenetic editing enables gene expression modulation of the silenced beta-galactoside alpha-2, 6-sialyltransferase 1 in CHO cells. Biotechnol. J. 13: e1700217.

    Article  PubMed  Google Scholar 

  57. Marx, N., H. Dhiman, V. Schmieder, C. M. Freire, L. N. Nguyen, G. Klanert, and N. Borth (2021) Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells. Metab. Eng. 66: 268–282.

    Article  CAS  PubMed  Google Scholar 

  58. Wang, W., X. Guo, Y.-M. Li, X.-Y. Wang, X.-J. Yang, Y.-F. Wang, and T.-Y. Wang (2018) Enhanced transgene expression using cis-acting elements combined with the EF1 promoter in a mammalian expression system. Eur. J. Pharm. Sci. 123: 539–545.

    Article  CAS  PubMed  Google Scholar 

  59. Heng, H. H., S. Goetze, C. J. Ye, G. Liu, J. B. Stevens, S. W. Bremer, S. M. Wykes, J. Bode, and S. A. Krawetz (2004) Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J. Cell Sci. 117: 999–1008.

    Article  CAS  PubMed  Google Scholar 

  60. Jia, Y.-L., X. Guo, X.-C. Wang, and T.-Y. Wang (2019) Human genome-derived TOP1 matrix attachment region enhances transgene expression in the transfected CHO cells. Biotechnol. Lett. 41: 701–709.

    Article  CAS  PubMed  Google Scholar 

  61. Ho, S. C., Mariati, J. H. Yeo, S. G. Fang, and Y. Yang (2015) Impact of using different promoters and matrix attachment regions on recombinant protein expression level and stability in stably transfected CHO cells. Mol. Biotechnol. 57: 138–144.”

    Article  CAS  PubMed  Google Scholar 

  62. Tian, Z.-W., D.-H. Xu, T.-Y. Wang, X.-Y. Wang, H.-Y. Xu, C.-P. Zhao, and G.-H. Xu (2018) Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells. J. Cell. Mol. Med. 22: 1095–1102.

    Article  CAS  PubMed  Google Scholar 

  63. Saunders, F., B. Sweeney, M. N. Antoniou, P. Stephens, and K. Cain (2015) Chromatin function modifying elements in an industrial antibody production platform—comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 10: e0120096.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Nematpour, F., F. Mahboudi, B. Vaziri, V. Khalaj, S. Ahmadi, M. Ahmadi, S. Ebadat, and F. Davami (2017) Evaluating the expression profile and stability of different UCOE containing vector combinations in mAb-producing CHO cells. BMC Biotechnol. 17:18.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Kwaks, T. H., P. Barnett, W. Hemrika, T. Siersma, R. G. Sewalt, D. P. Satijn, J. F. Brons, R. van Blokland, P. Kwakman, A. L. Kruckeberg, A. Kelder, and A. P. Otte (2003) Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat. Biotechnol. 21: 553–558.

    Article  CAS  PubMed  Google Scholar 

  66. Wang, W., X. Guo, S.-J. Chen, T.-Y. Wang, F. Wang, Q. Li, and Y.-F. Wang (2020) Effects of viral promoters, the Woodchuck hepatitis post-transcriptional regulatory element, and weakened antibiotic resistance markers on transgene expression in Chinese hamster ovary cells. Process Biochem. 94: 258–265.

    Article  CAS  Google Scholar 

  67. Nair, A. R., X. Jinger, and T. W. Hermiston (2011) Effect of different UCOE-promoter combinations in creation of engineered cell lines for the production of Factor VIII. BMC Res. Notes 4:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sadelain, M., E. P. Papapetrou, and F. D. Bushman (2012) Safe harbours for the integration of new DNA in the human genome. Nat. Rev. Cancer 12: 51–58.

    Article  CAS  Google Scholar 

  69. Zambrowicz, B. P., A. Imamoto, S. Fiering, L. A. Herzenberg, W. G. Kerr, and P. Soriano (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. U. S. A. 94: 3789–3794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Gaidukov, L., L. Wroblewska, B. Teague, T. Nelson, X. Zhang, Y. Liu, K. Jagtap, S. Mamo, W. A. Tseng, A. Lowe, J. Das, K. Bandara, S. Baijuraj, N. M. Summers, T. K. Lu, L. Zhang, and R. Weiss (2018) A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res. 46: 4072–4086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou, S., X. Ding, L. Yang, Y. Chen, X. Gong, J. Jin, and H. Li (2019) Discovery of a stable expression hot spot in the genome of Chinese hamster ovary cells using lentivirus-based random integration. Biotechnol. Biotechnol. Equip. 33: 605–612.

    Article  CAS  Google Scholar 

  72. Lee, Z., M. Raabe, and W.-S. Hu (2021) Epigenomic features revealed by ATAC-seq impact transgene expression in CHO cells. Biotechnol. Bioeng. 118: 1851–1861.

    Article  CAS  PubMed  Google Scholar 

  73. Kito, M., S. Itami, Y. Fukano, K. Yamana, and T. Shibui (2002) Construction of engineered CHO strains for high-level production of recombinant proteins. Appl. Microbiol. Biotechnol. 60: 442–448.

    Article  CAS  PubMed  Google Scholar 

  74. Lieu, P. T., T. Machleidt, B. Thyagarajan, A. Fontes, E. Frey, M. Fuerstenau-Sharp, D. V. Thompson, G. M. Swamilingiah, S. S. Derebail, D. Piper, and J. D. Chesnut (2009) Generation of site-specific retargeting platform cell lines for drug discovery using phiC31 and R4 integrases. J. Biomol. Screen. 14: 1207–1215.

    Article  CAS  PubMed  Google Scholar 

  75. Inniss, M. C., K. Bandara, B. Jusiak, T. K. Lu, R. Weiss, L. Wroblewska, and L. Zhang (2017) A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO cells. Biotechnol. Bioeng. 114: 1837–1846.

    Article  CAS  PubMed  Google Scholar 

  76. Huang, Y., Y. Li, Y. G. Wang, X. Gu, Y. Wang, and B. F. Shen (2007) An efficient and targeted gene integration system for high-level antibody expression. J. Immunol. Methods 322: 28–39.

    Article  CAS  PubMed  Google Scholar 

  77. Oliviero, C., S. C. Hinz, J. P. Bogen, H. Kornmann, B. Hock, H. Kolmar, and G. Hagens (2022) Generation of a host cell line containing a MAR-rich landing pad for site-specific integration and expression of transgenes. Biotechnol. Prog. 38: e3254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sergeeva, D., G. M. Lee, L. K. Nielsen, and L. M. Grav (2020) Multicopy targeted integration for accelerated development of high-producing Chinese hamster ovary cells. ACS Synth. Biol. 9:2546–2561.

    Article  CAS  PubMed  Google Scholar 

  79. Altamura, R., J. Doshi, and Y. Benenson (2022) Rational design and construction of multi-copy biomanufacturing islands in mammalian cells. Nucleic Acids Res. 50: 561–578.

    Article  CAS  PubMed  Google Scholar 

  80. Lieske, P. L., W. Wei, K. B. Crowe, B. Figueroa, and L. Zhang (2020) HIF-1 signaling pathway implicated in phenotypic instability in a Chinese hamster ovary production cell line. Biotechnol. J. 15: e1900306.

    Article  PubMed  Google Scholar 

  81. Tzani, I., N. Herrmann, S. Carillo, C. A. Spargo, R. Hagan, N. Barron, J. Bones, W. Shannon Dillmore, and C. Clarke (2021) Tracing production instability in a clonally derived CHO cell line using single-cell transcriptomics. Biotechnol. Bioeng. 118: 2016–2030.

    Article  CAS  PubMed  Google Scholar 

  82. Bailey, L. A., D. Hatton, R. Field, and A. J. Dickson (2012) Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol. Bioeng. 109: 2093–2103.

    Article  CAS  PubMed  Google Scholar 

  83. Chitwood, D. G., Q. Wang, K. Elliott, A. Bullock, D. Jordana, Z. Li, C. Wu, S. W. Harcum, and C. A. Saski (2021) Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures. BMC Biotechnol. 21: 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Dobson, P. D., K. P. Coss, C. Doherty, J. Clifford, B. Thompson, and D. C. James (2020) Cell function profiling to assess clone stability. Biotechnol. Bioeng. 117: 2295–2299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Inha University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Youn Baik.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joo, Y., Kim, H. & Baik, J.Y. Chinese Hamster Ovary Cell Line Instability: Causes, Mitigation, and Prediction. Biotechnol Bioproc E 28, 750–760 (2023). https://doi.org/10.1007/s12257-023-0120-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0120-6

Keywords

Navigation