Skip to main content
Log in

Inhibitory Activities of GDX-365 on HMGB1-mediated Septic Responses

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

GDX-365, is the main fraction of black ginseng comprising protopanaxatriol-type rare ginsenosides (ginsenosides Rg3, Rk1, and Rg5). High mobility group box 1 (HMGB1) is known as a late mediator of sepsis. There are no reported research on the antiseptic properties of GDX-365. The suppression of HMGB1 release and restoration of vascular barrier integrity have emerged as promising therapeutic approaches for sepsis management. In this study, we looked at how GDX-365 affected the survival rate and HMGB1-mediated septic responses in a mouse sepsis model. The mice were given GDX-365 following the HMGB1 challenge. Using sepsis mouse model by cecal ligation and puncture (CLP) and human umbilical vein endothelial cells (HUVECs), measurements of permeability, and septic animal mortality, the antiseptic activity of GDX-365 was evaluated under septic conditions. We discovered that GDX-365 greatly decreased the release of HMGB1 from CLP-induced release of HMGB1 in mice and Lipopolysaccharide-activated HUVECs. Inhibiting hyper-permeability in the animals and restoring HMGB1-mediated vascular disruption were other effects of GDX-365. Additionally, GDX-365 therapy decreased in vivo sepsis-related mortality. Our findings imply that GDX-365 is effective in the treatment of sepsis since it lowers HMGB1 release and septic mortality in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Russell, J. A. (2006) Management of sepsis. N. Engl. J. Med. 355: 1699–1713.

    CAS  PubMed  Google Scholar 

  2. Dolmatova, E. V., K. Wang, R. Mandavilli, and K. K. Griendling (2021) The effects of sepsis on endothelium and clinical implications. Cardiovasc. Res. 117: 60–73.

    CAS  PubMed  Google Scholar 

  3. Zhou, W., J. Oh, L. Wonhwa, S. Kwak, W. Li, A. G. Chittiboyina, D. Ferreira, M. T. Hamann, S. H. Lee, J.-S. Bae, and M. Na (2014) The first cyclomegastigmane rhododendroside A from Rhododendron brachycarpum alleviates HMGB1-induced sepsis. Biochim. Biophys. Acta. 1840: 2042–2049.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Huang, W., Y. Tang, and L. Li (2010) HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51: 119–126.

    CAS  PubMed  Google Scholar 

  5. Wang, H., O. Bloom, M. Zhang, J. M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, K. R. Manogue, E. Faist, E. Abraham, J. Andersson, U. Andersson, P. E. Molina, N. N. Abumrad, A. Sama, and K. J. Tracey (1999) HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248–251.

    CAS  PubMed  Google Scholar 

  6. Bae, J.-S. (2012) Role of high mobility group box 1 in inflammatory disease: focus on sepsis. Arch. Pharm. Res. 35: 1511–1523.

    CAS  PubMed  Google Scholar 

  7. Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H. E. Harris, S. M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, C. J. Czura, H. Wang, J. Roth, H. S. Warren, M. P. Fink, M. J. Fenton, U. Andersson, and K. J. Tracey (2004) Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl Acad. Sci. U. S. A. 101: 296–301.

    CAS  PubMed  Google Scholar 

  8. Qi, L.-W., C.-Z. Wang, and C.-S. Yuan (2011) Isolation and analysis of ginseng: advances and challenges. Nat. Prod. Rep. 28: 467–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. An, M.-Y., S. R. Lee, H.-J. Hwang, J.-G. Yoon, H.-J. Lee, and J. A. Cho (2021) Antioxidant and anti-inflammatory effects of Korean black ginseng extract through ER stress pathway. Antioxidants (Basel) 10: 62.

    CAS  PubMed  Google Scholar 

  10. Huang, L., H.-J. Li, and Y.-C. Wu (2023) Processing technologies, phytochemistry, bioactivities and applications of black ginseng-a novel manufactured ginseng product: a comprehensive review. Food Chem. 407: 134714.

    CAS  PubMed  Google Scholar 

  11. Metwaly, A. M., Z. Lianlian, H. Luqi, and D. Deqiang (2019) Black ginseng and its saponins: preparation, phytochemistry and pharmacological effects. Molecules 24: 1856.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, D.-K., S. Park, N. P. Long, J. E. Min, H. M. Kim, E. Yang, S. J. Lee, J. Lim, and S. W. Kwon (2020) Research quality-based multivariate modeling for comparison of the pharmacological effects of black and red ginseng. Nutrients 12: 2590.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee, M. R., B. S. Yun, O. H. In, and C. K. Sung (2011) Comparative study of Korean white, red, and black ginseng extract on cholinesterase inhibitory activity and cholinergic function. J. Ginseng. Res. 35: 421–428.

    PubMed  PubMed Central  Google Scholar 

  14. Zhu, Y., C. Zhu, H. Yang, J. Deng, and D. Fan (2020) Protective effect of ginsenoside Rg5 against kidney injury via inhibition of NLRP3 inflammasome activation and the MAPK signaling pathway in high-fat diet/streptozotocin-induced diabetic mice. Pharmacol. Res. 155: 104746.

    CAS  PubMed  Google Scholar 

  15. Zhu, Y., H. Yang, J. Deng, and D. Fan (2021) Ginsenoside Rg5 improves insulin resistance and mitochondrial biogenesis of liver via regulation of the Sirt1/PGC-1α signaling pathway in db/db mice. J. Agric. Food Chem. 69: 8428–8439.

    CAS  PubMed  Google Scholar 

  16. Lee, S. M. (2014) Anti-inflammatory effects of ginsenosides Rg5, Rz1, and Rk1: inhibition of TNF-α-induced NF-κB, COX-2, and iNOS transcriptional expression. Phytother. Res. 28: 1893–1896.

    CAS  PubMed  Google Scholar 

  17. Chen, C., Q. Lv, Y. Li, and Y.-H. Jin (2021) The anti-tumor effect and underlying apoptotic mechanism of ginsenoside Rk1 and Rg5 in human liver cancer cells. Molecules 26: 3926.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. He, B.-C., J.-L. Gao, X. Luo, J. Luo, J. Shen, L. Wang, Q. Zhou, Y.-T. Wang, H. H. Luu, R. C. Haydon, C.-Z. Wang, W. Du, C.-S. Yuan, T.-C. He, and B.-Q. Zhang (2011) Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/β-catenin signaling. Int. J. Oncol. 38: 437–445.

    CAS  PubMed  Google Scholar 

  19. Liu, X., X. Mi, Z. Wang, M. Zhang, J. Hou, S. Jiang, Y. Wang, C. Chen, and W. Li (2020) Ginsenoside Rg3 promotes regression from hepatic fibrosis through reducing inflammation-mediated autophagy signaling pathway. Cell Death Dis. 11: 454.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Leung, K. W. and A. S. Wong (2010) Pharmacology of ginsenosides: a literature review. Chin. Med. 5: 20.

    PubMed  PubMed Central  Google Scholar 

  21. Murugesan, M., R. Mathiyalagan, V. Boopathi, B. M. Kong, S.-K. Choi, C.-S. Lee, D. C. Yang, S. C. Kang, and T. Thambi (2022) Production of minor ginsenoside CK from major ginsenosides by biotransformation and its advances in targeted delivery to tumor tissues using nanoformulations. Nanomaterials (Basel) 12: 3427.

    CAS  PubMed  Google Scholar 

  22. Popovich, D. G. and D. D. Kitts (2002) Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1) cell line. Arch. Biochem. Biophys. 406: 1–8.

    CAS  PubMed  Google Scholar 

  23. Chen, D.-J., H.-M. Liu, S.-F. Xing, and X.-L. Piao (2014) Cytotoxic activity of gypenosides and gynogenin against non-small cell lung carcinoma A549 cells. Bioorg. Med. Chem. Lett. 24: 186–191.

    CAS  PubMed  Google Scholar 

  24. Kim, J.-E., W. Lee, S. Yang, S.-H. Cho, M.-C. Baek, G.-Y. Song, and J.-S. Bae (2019) Suppressive effects of rare ginsenosides, Rk1 and Rg5, on HMGB1-mediated septic responses. Food Chem. Toxicol. 124: 45–53.

    CAS  PubMed  Google Scholar 

  25. Zheng, M.-M., F.-X. Xu, Y.-J. Li, X.-Z. Xi, X.-W. Cui, C.-C. Han, and X.-L. Zhang (2017) Study on transformation of ginsenosides in different methods. Biomed. Res. Int. 2017: 8601027.

    PubMed  PubMed Central  Google Scholar 

  26. Parshikov, I. A. and J. B. Sutherland (2015) Biotransformation of steroids and flavonoids by cultures of Aspergillus niger. Appl. Biochem. Biotechnol. 176: 903–923.

    CAS  PubMed  Google Scholar 

  27. Vo, H. T., J. Y. Cho, Y.-E. Choi, Y.-S. Choi, and Y.-H. Jeong (2015) Kinetic study for the optimization of ginsenoside Rg3 production by heat treatment of ginsenoside Rb1. J. Ginseng Res. 39: 304–313.

    PubMed  PubMed Central  Google Scholar 

  28. Kim, C., S. H. Ryu, N. Kim, W. Lee, and J.-S. Bae (2022) Renal protective effects of Sparstolonin B in a mouse model of sepsis. Biotechnol. Bioprocess Eng. 27: 157–162.

    CAS  Google Scholar 

  29. Lee, I.-C. and J.-S. Bae (2022) Hepatic protective effects of Jujuboside B through the modulation of inflammatory pathways. Biotechnol. Bioprocess Eng. 27: 336–343.

    CAS  Google Scholar 

  30. Song, Y., K.-I. Joo, and J. H. Seo (2021) Evaluation of mechanical and thermal properties of hydroxyapatite-levan composite bone graft. Biotechnol. Bioprocess Eng. 26: 201–207.

    CAS  Google Scholar 

  31. Buras, J. A., B. Holzmann, and M. Sitkovsky (2005) Animal models of sepsis: setting the stage. Nat. Rev. Drug Discov. 4: 854–865.

    CAS  PubMed  Google Scholar 

  32. Lee, W., S.-K. Ku, Y.-M. Lee, and J.-S. Bae (2014) Anti-septic effects of glyceollins in HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem. Toxicol. 63: 1–8.

    CAS  PubMed  Google Scholar 

  33. Qin, Y.-H., S.-M. Dai, G.-S. Tang, J. Zhang, D. Ren, Z.-W. Wang, and Q. Shen (2009) HMGB1 enhances the proinflammatory activity of lipopolysaccharide by promoting the phosphorylation of MAPK p38 through receptor for advanced glycation end products. J. Immunol. 183: 6244–6250.

    CAS  PubMed  Google Scholar 

  34. Sun, C., C. Liang, Y. Ren, Y. Zhen, Z. He, H. Wang, H. Tan, X. Pan, and Z. Wu (2009) Advanced glycation end products depress function of endothelial progenitor cells via p38 and ERK 1/2 mitogen-activated protein kinase pathways. Basic Res. Cardiol. 104: 42–49.

    CAS  PubMed  Google Scholar 

  35. Palumbo, R., B. G. Galvez, T. Pusterla, F. De Marchis, G. Cossu, K. B. Marcu, and M. E. Bianchi (2007) Cells migrating to sites of tissue damage in response to the danger signal HMGB1 require NF-kappaB activation. J. Cell Biol. 179: 33–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee, W., S. Choo, H. Sim, and J.-S. Bae (2021) Inhibitory activities of ononin on particulate matter-induced oxidative stress. Biotechnol. Bioprocess Eng. 26: 208–215.

    CAS  Google Scholar 

  37. Sim, H., Y. Noh, S. Choo, N. Kim, T. Lee, and J.-S. Bae (2021) Suppressive activities of fisetin on particulate matter-induced oxidative stress. Biotechnol. Bioprocess Eng. 26: 568–574.

    CAS  Google Scholar 

  38. Erlandsson Harris, H. and U. Andersson (2004) Mini-review: the nuclear protein HMGB1 as a proinflammatory mediator. Eur. J. Immunol. 34: 1503–1512.

    CAS  PubMed  Google Scholar 

  39. Jung, B., H. Kang, W. Lee, H. J. Noh, Y.-S. Kim, M.-S. Han, M.-C. Baek, J. Kim, and J.-S. Bae (2016) Anti-septic effects of dabrafenib on HMGB1-mediated inflammatory responses. BMB Rep. 49: 214–219.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Min, G., S.-K. Ku, M. S. Park, T.-J. Park, H.-S. Lee, and J. S. Bae (2016) Anti-septic effects of pelargonidin on HMGB1-induced responses in vitro and in vivo. Arch. Pharm. Res. 39: 1726–1738.

    CAS  PubMed  Google Scholar 

  41. Kim, T.-W., E.-H. Joh, B. Kim, and D.-H. Kim (2012) Ginsenoside Rg5 ameliorates lung inflammation in mice by inhibiting the binding of LPS to toll-like receptor-4 on macrophages. Int. Immunopharmacol. 12: 110–116.

    CAS  PubMed  Google Scholar 

  42. Wang, J., L. Zeng, Y. Zhang, W. Qi, Z. Wang, L. Tian, D. Zhao, Q. Wu, X. Li, and T. Wang (2022) Pharmacological properties, molecular mechanisms and therapeutic potential of ginsenoside Rg3 as an antioxidant and anti-inflammatory agent. Front. Pharmacol. 13: 975784.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li, W., X. Zhang, M. Ding, Y. Xin, Y. Xuan, and Y. Zhao (2019) Genotoxicity and subchronic toxicological study of a novel ginsenoside derivative 25-OCH3-PPD in beagle dogs. J. Ginseng Res. 43: 562–571.

    PubMed  Google Scholar 

  44. Bogatcheva, N. V. and A. D. Verin (2008) The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc. Res. 76: 202–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, K. H. (2000) Research and future trends in the pharmaceutical development of medicinal herbs from Chinese medicine. Public Health Nutr. 3: 515–522.

    CAS  PubMed  Google Scholar 

  46. Ghamari, F., S. M. Ghaffari, M. Salami, F. Moosavi-Movahedi, F. Farivar, A. Johari, A. A. Saboury, J. M. Chobert, T. Haertlé, and A. A. Moosavi-Movahedi (2013) Synergic study of α-glucosidase inhibitory action of aloin and its antioxidant activity with and without camel β-casein and its peptides. Protein Pept. Lett. 20: 607–612.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant number: HI15C0001), and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2020R1A2C1004131, 2017R1A5A2015385).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gyu Yong Song or Jong-Sup Bae.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, DH., Kim, G.O., Choi, HJ. et al. Inhibitory Activities of GDX-365 on HMGB1-mediated Septic Responses. Biotechnol Bioproc E 28, 623–631 (2023). https://doi.org/10.1007/s12257-023-0043-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0043-2

Keywords

Navigation