Skip to main content
Log in

Effect of Gas Bubbles on the Recovery Efficiency of Paclitaxel from Biomass of Taxus chinensis in Ultrasonic Extraction

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The synergistic effect of introducing both ultrasonic cavitation bubbles and gas bubbles to the extraction of paclitaxel from Taxus chinensis biomass was investigated. The addition of gas bubbles to ultrasonic extraction significantly improved the extraction efficiency, confirming that ultrasonic cavitation bubbles and gas bubbles have a synergistic effect. Furthermore, an ultrasonic power of 250 W and a gas flow rate of 1.750 L/min could recover up to 94% of the paclitaxel from the biomass. In addition, as the ultrasonic power and gas flow rate increased, the extraction rate constant, the effective diffusion coefficient, and the mass transfer coefficient also increased. The efficiency of paclitaxel extraction was improved by the efficient crushing of the biomass facilitated by the synergistic effect of the ultrasonic cavitation bubbles and the gas bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, H.-G. and J.-H. Kim (2022) Elucidation of the mechanism and kinetics of ultrasonic extraction of paclitaxel from plant cell cultures of Taxus chinensis. Biotechnol. Bioprocess Eng. 27: 668–677.

    Article  CAS  Google Scholar 

  2. Zhu, L. and L. Chen (2019) Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 24: 40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhao, Y., Z.-F. Chang, R. Li, Z.-G. Li, X.-X. Li, and L. Li (2016) Paclitaxel suppresses collagen-induced arthritis: a reevaluation. Am. J. Transl. Res. 8: 5044–5051.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Modarresi-Darreh, B., K. Kamali, S. M. Kalantar, H. Dehghanizadeh, and B. Aflatoonian (2018) Comparison of synthetic and natural Taxol extracted from Taxus plant (Taxus baccata) on growth of ovarian cancer cells under in vitro condition. Eurasia J. Biosci. 12: 413–418.

    CAS  Google Scholar 

  5. Howat, S., B. Park, I. S. Oh, Y.-W. Jin, E.-K. Lee, and G. J. Loake (2014) Paclitaxel: biosynthesis, production and future prospects. New Biotechnol. 31: 242–245.

    Article  CAS  Google Scholar 

  6. Kang, H.-J. and J.-H. Kim (2020) Cavitation bubble- and gas bubble-induced fractional precipitation of paclitaxel from Taxus chinensis. Process Biochem. 99: 316–323.

    Article  CAS  Google Scholar 

  7. Min, H.-S., H.-G. Kim, and J.-H. Kim (2022) Ultrasound-negative pressure cavitation extraction of paclitaxel from Taxus chinensis. Korean J. Chem. Eng. 39: 398–407.

    Article  CAS  Google Scholar 

  8. Min, H.-S. and J.-H. Kim (2022) Study of the extraction kinetics and calculation of effective diffusivity and mass transfer coefficient in negative pressure cavitation extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 27: 111–118.

    Article  CAS  Google Scholar 

  9. Tabata, H. (2004) Paclitaxel production by plant-cell-culture technology. Adv. Biochem. Eng. Biotechnol. 87: 1–23.

    CAS  PubMed  Google Scholar 

  10. Min, H.-S. and J.-H. Kim (2022) Negative pressure cavitation fractional precipitation for the purification of paclitaxel from Taxus chinensis. Korean J. Chem. Eng. 39: 58–62.

    Article  CAS  Google Scholar 

  11. Kang, D.-Y. and J.-H. Kim (2022) Two-component adsorption characteristics of paclitaxel and 10-deacetylpaclitaxel from Taxus chinensis onto Sylopute. Biotechnol. Bioprocess Eng. 27: 145–155.

    Article  CAS  Google Scholar 

  12. Sreekanth, D., A. Syed, S. Sarkar, D. Sarkar, B. Santhakumari, A. Ahmad, and I. Khan (2009) Production, purification and characterization of taxol and 10DAB III from a new endophytic fungus Gliocladium sp. isolated from the Indian yew tree, Taxus baccata. J. Microbiol. Biotechnol. 19: 1342–1347.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, J.-H. and S.-S. Hong (2000) Optimization of extraction process for mass production of paclitaxel from plant cell cultures. Korean J. Biotechnol. Bioeng. 15: 346–351.

    CAS  Google Scholar 

  14. Hyun, J.-E. and J.-H. Kim (2008) Microwave-assisted extraction of paclitaxel from plant cell cultures. Korean J. Biotechnol. Bioeng. 23: 281–284.

    Google Scholar 

  15. Ha, G.-S. and J.-H. Kim (2016) Kinetic and thermodynamic characteristics of ultrasound-assisted extraction for recovery of paclitaxel from biomass. Process Biochem. 51: 1664–1673.

    Article  CAS  Google Scholar 

  16. Yoo, K.-W. and J.-H. Kim (2018) Kinetics and mechanism of ultrasound-assisted extraction of paclitaxel from Taxus chinensis. Biotechnol. Bioprocess Eng. 23: 532–540.

    Article  CAS  Google Scholar 

  17. Kim, J.-H. (2020) Comparison of conventional solvent extraction, microwave-assisted extraction, and ultrasound-assisted extraction methods for paclitaxel recovery from biomass. Korean Chem. Eng. Res. 58: 273–279.

    CAS  Google Scholar 

  18. Choi, H.-K., J.-H. Yun, S.-I. Kim, J.-S. Son, H.-R. Kim, J.-H. Kim, H.-J. Choi, and S.-S. Hong (2001) Enhanced production of paclitaxel by semi-continuous batch process (SCBP) in suspension culture of Taxus chinensis. Enzyme Microb. Technol. 29: 583–586.

    Article  CAS  Google Scholar 

  19. Ho, Y.-S., H. A. Harouna-Oumarou, H. Fauduet, and C. Porte (2005) Kinetics and model building of leaching of water-soluble compounds of Tilia sapwood. Sep. Purif. Technol. 45: 169–173.

    Article  CAS  Google Scholar 

  20. Krishnan, R. Y. and K. S. Rajan (2016) Microwave assisted extraction of flavonoids from Terminalia bellerica: study of kinetics and thermodynamics. Sep. Purif. Technol. 157: 169–178.

    Article  Google Scholar 

  21. Krishnan, R. Y., M. N. Chandran, V. Vadivel, and K. S. Rajan (2016) Insights on the influence of microwave irradiation on the extraction of flavonoids from Terminalia chebula. Sep. Purif. Technol. 170: 224–233.

    Article  Google Scholar 

  22. Rakotondramasy-Rabesiaka, L., J.-L. Havet, C. Porte, and H. Fauduet (2010) Estimation of effective diffusion and transfer rate during the protopine extraction process from Fumaria officinalis L. Sep. Purif. Technol. 76: 126–131.

    Article  CAS  Google Scholar 

  23. Albarri, R. and S. Şahin (2021) Kinetics, thermodynamics, and mass transfer mechanism of the ultrasound-assisted extraction of bioactive molecules from Moringa oleifera leaves. Biomass Conv. Bioref.https://doi.org/10.1007/s13399-021-01686-5

  24. Ji, J., X. Lu, M. Cai, and Z. Xu (2006) Improvement of leaching process of Geniposide with ultrasound. Ultrason. Sonochem. 13: 455–462.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Number: 2021R1A2C1003186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-Hyun Kim.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, HJ., Kim, JH. Effect of Gas Bubbles on the Recovery Efficiency of Paclitaxel from Biomass of Taxus chinensis in Ultrasonic Extraction. Biotechnol Bioproc E 28, 545–553 (2023). https://doi.org/10.1007/s12257-023-0023-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-023-0023-6

Keywords

Navigation