Skip to main content
Log in

Polyethylene-biodegrading Microbes and Their Future Directions

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Management of plastic waste is becoming a serious global environmental issue. Plastic pollution threatens a wide variety of ecosystems and brings damaging repercussions for many wildlife species. Polyethylene (PE) is a major petroleum-based plastic that has become indispensable in all aspects of modern life because of its many applications. PE is extremely resistant to natural biodegradation processes, resulting in its accumulation in the environment. Therefore, microorganism-mediated decomposition of PE is attracting attention as an ideal, sustainable method to reduce PE accumulation. In this review, we summarize capacities of various microbes (bacteria and fungi) to degrade PE, the physical products of PE degradation, and potential PE-degrading enzymes. Furthermore, we propose future directions for building PE-decomposition systems such as metabolons that use diverse enzymes to increase the activities and/or stabilities of potential PE degradable enzymes. Thus, this review article will contribute to developing PE-biodegradation systems using microbes and their biocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geyer, R. (2020) Production, use, and fate of synthetic polymers. pp. 13–32. In: T. M. Letcher (ed.). Plastic Waste and Recycling: Environmental Impact, Societal Issues, Prevention, and Solutions. Academic Press, London, UK.

    Google Scholar 

  2. Lee, Q. Y. and H. Li (2021) Photocatalytic degradation of plastic waste: a mini review. Micromachines (Basel) 12: 907.

    PubMed  Google Scholar 

  3. Gijsman, P. (2008) Review on the thermo-oxidative degradation of polymers during processing and in service. E-Polym. 8: 065.

    Google Scholar 

  4. Arhant, M., M. Le Gall, P.-Y. Le Gac, and P. Davies (2019) Impact of hydrolytic degradation on mechanical properties of PET - towards an understanding of microplastics formation. Polym. Degrad. Stab. 161: 175–182.

    CAS  Google Scholar 

  5. Garcia, J. M. and M. L. Robertson (2017) The future of plastics recycling. Science 358: 870–872.

    PubMed  CAS  Google Scholar 

  6. Urbanek, A. K., W. Rymowicz, and A. M. Mirończuk (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl. Microbiol. Biotechnol. 102: 7669–7678.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Fesseha, H. and F. Abebe (2019) Degradation of plastic materials using microorganisms: a review. Public Health (Fairfax) 4: 57–63.

    Google Scholar 

  8. Ghatge, S., Y. Yang, J.-H. Ahn, and H.-G. Hur (2020) Biodegradation of polyethylene: a brief review. Appl. Biol. Chem. 63: 27.

    CAS  Google Scholar 

  9. Lear, G., J. M. Kingsbury, S. Franchini, V. Gambarini, S. D. M. Maday, J. A. Wallbank, L. Weaver, and O. Pantos (2021) Plastics and the microbiome: impacts and solutions. Environ. Microbiome 16: 2.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Atanasova, N., S. Stoitsova, T. Paunova-Krasteva, and M. Kambourova (2021) Plastic degradation by extremophilic bacteria. Int. J. Mol. Sci. 22: 5610.

    PubMed  PubMed Central  CAS  Google Scholar 

  11. Zrimec, J., M. Kokina, S. Jonasson, F. Zorrilla, and A. Zelezniak (2021) Plastic-degrading potential across the global microbiome correlates with recent pollution trends. mBio 12: e0215521.

    PubMed  Google Scholar 

  12. Zeenat, A. Elahi, D. A. Bukhari, S. Shamim, and A. Rehman (2021) Plastics degradation by microbes: a sustainable approach. J. King Saud Univ. Sci. 33: 101538.

    Google Scholar 

  13. Gambarini, V., O. Pantos, J. M. Kingsbury, L. Weaver, K. M. Handley, and G. Lear (2021) Phylogenetic distribution of plastic-degrading microorganisms. mSystems 6: e01112–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Cf, S. F., S. Rebello, E. M. Aneesh, R. Sindhu, P. Binod, S. Singh, and A. Pandey (2021) Bioprospecting of gut microflora for plastic biodegradation. Bioengineered 12: 1040–1053.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Gambarini, V., O. Pantos, J. M. Kingsbury, L. Weaver, K. M. Handley, and G. Lear (2022) PlasticDB: a database of microorganisms and proteins linked to plastic biodegradation. Database (Oxford) 2022: baac008.

    PubMed  CAS  Google Scholar 

  16. Shilpa, N. Basak, and S. S. Meena (2022) Microbial biodegradation of plastics: challenges, opportunities, and a critical perspective. Front. Environ. Sci. Eng. 16: 161.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Abrusci, C., J. L. Pablos, T. Corrales, J. López-Marín, I. Marín, and F. Catalina (2011) Biodegradation of photo-degraded mulching films based on polyethylenes and stearates of calcium and iron as pro-oxidant additives. Int. Biodeterior. Biodegradation 65: 451–459.

    CAS  Google Scholar 

  18. Yoon, H. K., S. T. Jung, J. H. Kim, and T. H. Yoo (2012) Recent development of highly sensitive protease assay methods: signal amplification through enzyme cascades. Biotechnol. Bioprocess Eng. 17: 1113–1119.

    PubMed  CAS  Google Scholar 

  19. Somasundaram, S., J. Jeong, G. Irisappan, T. W. Kim, and S. H. Hong (2020) Enhanced production of malic acid by co-localization of phosphoenolpyruvate carboxylase and malate dehydrogenase using synthetic protein scaffold in Escherichia coli. Biotechnol. Bioprocess Eng. 25: 39–44.

    CAS  Google Scholar 

  20. Tran, K.-N. T., A. Kumaravel, J. Jeong, and S. H. Hong (2022) High yield fermentation of L-serine in recombinant Escherichia coli via co-localization of SerB and EamA through protein scaffold. Biotechnol. Bioprocess Eng. 27: 262–267.

    CAS  Google Scholar 

  21. Venkatesh, S., S. Mahboob, M. Govindarajan, K. A. Al-Ghanim, Z. Ahmed, N. Al-Mulhm, R. Gayathri, and S. Vijayalakshmi (2021) Microbial degradation of plastics: sustainable approach to tackling environmental threats facing big cities of the future. J. King Saud Univ. Sci. 33: 101362.

    Google Scholar 

  22. Srikanth, M., T. S. R. S. Sandeep, K. Sucharitha, and S. Godi (2022) Biodegradation of plastic polymers by fungi: a brief review. Bioresour. Bioprocess. 9: 42.

    Google Scholar 

  23. Botre, S., P. Jadhav, L. Saraf, K. Rau, and A. Wagle (2015) Screening and isolation of polyethylene degrading bacteria from various sources. Int. Res. J. Environ. Sci. 4: 58–61.

    CAS  Google Scholar 

  24. Pramila, R. and K. V. Ramesh (2015) Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. Afr. J. Bacteriol. Res. 7: 24–28.

    Google Scholar 

  25. Khandare, S. D., D. R. Chaudhary, and B. Jha (2021) Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic. Biodegradation 32: 127–143.

    PubMed  CAS  Google Scholar 

  26. Das, M. P. and S. Kumar (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5: 81–86.

    PubMed  Google Scholar 

  27. Ibiene, A. A., H. O. Stanley, and O. M. Immanuel (2013) Biodegradation of polyethylene by Bacillus sp. indigenous to the Niger delta mangrove swamp. Niger. J. Biotechnol. 26: 68–79.

    Google Scholar 

  28. Harshvardhan, K. and B. Jha (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar. Pollut. Bull. 77: 100–106.

    PubMed  CAS  Google Scholar 

  29. Vimala, P. P. and L. Mathew (2016) Biodegradation of polyethylene using Bacillus subtilis. Procedia Technol. 24: 232–239.

    Google Scholar 

  30. Gupta, K. K. and D. Devi (2019) Biodegradation of low density polyethylene by selected Bacillus sp. Gazi Univ. J. Sci. 32: 802–813.

    Google Scholar 

  31. Muhonja, C. N., H. Makonde, G. Magoma, and M. Imbuga (2018) Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One 13: e0198446.

    PubMed  PubMed Central  Google Scholar 

  32. Biki, S. P., S. Mahmud, S. Akhter, M. J. Rahman, J. J. Rix, M. A. Al Bachchu, and M. Ahmed (2021) Polyethylene degradation by Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 isolated from land fill soil site. Environ. Technol. Innov. 22: 101495.

    CAS  Google Scholar 

  33. Yang, J., Y. Yang, W.-M. Wu, J. Zhao, and L. Jiang (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ. Sci. Technol. 48: 13776–13784.

    PubMed  CAS  Google Scholar 

  34. Samanta, S., D. Datta, and G. Halder (2020) Biodegradation efficacy of soil inherent novel sp. Bacillus tropicus (MK318648) onto low density polyethylene matrix. J. Polym. Res. 27: 324.

    CAS  Google Scholar 

  35. Liu, X., Y. Zhang, Q. Sun, Z. Liu, Y. Zhao, A. Fan, and H. Su (2022) Rapid colonization and biodegradation of untreated commercial polyethylene wrap by a new strain of Bacillus velezensis C5. J. Environ. Manage. 301: 113848.

    PubMed  CAS  Google Scholar 

  36. Hadad, D., S. Geresh, and A. Sivan (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J. Appl. Microbiol. 98: 1093–1100.

    PubMed  CAS  Google Scholar 

  37. Jeon, H. J. and M. N. Kim (2013) Isolation of a thermophilic bacterium capable of low-molecular-weight polyethylene degradation. Biodegradation 24: 89–98.

    PubMed  CAS  Google Scholar 

  38. Peixoto, J., L. P. Silva, and R. H. Krüger (2017) Brazilian Cerrado soil reveals an untapped microbial potential for unpretreated polyethylene biodegradation. J. Hazard. Mater. 324: 634–644.

    PubMed  CAS  Google Scholar 

  39. Ren, L., L. Men, Z. Zhang, F. Guan, J. Tian, B. Wang, J. Wang, Y. Zhang, and W. Zhang (2019) Biodegradation of polyethylene by Enterobacter sp. D1 from the guts of wax moth Galleria mellonella. Int. J. Environ. Res. Public Health 16: 1941.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Awasthi, S., P. Srivastava, P. Singh, D. Tiwary, and P. K. Mishra (2017) Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech 7: 332.

    PubMed  PubMed Central  Google Scholar 

  41. Jeon, J.-M., S.-J. Park, T.-R. Choi, J.-H. Park, Y.-H. Yang, and J.-J. Yoon (2021) Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove. Polym. Degrad. Stab. 191: 109662.

    CAS  Google Scholar 

  42. Li, Z., R. Wei, M. Gao, Y. Ren, B. Yu, K. Nie, H. Xu, and L. Liu (2020) Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31. J. Environ. Manage. 263: 110402.

    PubMed  CAS  Google Scholar 

  43. Kathiresan, K. (2003) Polythene and plastic-degrading microbes in an Indian mangrove soil. Rev. Biol. Trop. 51: 629–633.

    PubMed  CAS  Google Scholar 

  44. Bonhomme, S., A. Cuer, A.-M. Delort, J. Lemaire, M. Sancelme, and G. Scott (2003) Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 81: 441–452.

    CAS  Google Scholar 

  45. Sarmah, P. and J. Rout (2018) Efficient biodegradation of low-density polyethylene by cyanobacteria isolated from submerged polyethylene surface in domestic sewage water. Environ. Sci. Pollut. Res. Int. 25: 33508–33520.

    PubMed  CAS  Google Scholar 

  46. Bardají, D. K. R., J. P. R. Furlan, and E. G. Stehling (2019) Isolation of a polyethylene degrading Paenibacillus sp. from a landfill in Brazil. Arch. Microbiol. 201: 699–704.

    PubMed  Google Scholar 

  47. Kyaw, B. M., R. Champakalakshmi, M. K. Sakharkar, C. S. Lim, and K. R. Sakharkar (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J. Microbiol. 52: 411–419.

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Jeon, H. J. and M. N. Kim (2015) Functional analysis of alkane hydroxylase system derived from Pseudomonas aeruginosa E7 for low molecular weight polyethylene biodegradation. Int. Biodeterior. Biodegradation 103: 141–146.

    CAS  Google Scholar 

  49. Hou, L., J. Xi, J. Liu, P. Wang, T. Xu, T. Liu, W. Qu, and Y. B. Lin (2022) Biodegradability of polyethylene mulching film by two Pseudomonas bacteria and their potential degradation mechanism. Chemosphere 286: 131758.

    PubMed  CAS  Google Scholar 

  50. Nourollahi, A., S. Sedighi-Khavidak, M. Mokhtari, G. Eslami, and M. Shiranian (2019) Isolation and identification of low-density polyethylene (LDPE) biodegrading bacteria from waste landfill in Yazd. Int. J. Environ. Stud. 76: 236–250.

    CAS  Google Scholar 

  51. Nanda, S., S. Sahu, and J. Abraham (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J. Appl. Sci. Environ. Manag. 14: 57–60.

    CAS  Google Scholar 

  52. Orr, I. G., Y. Hadar, and A. Sivan (2004) Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biotechnol. 65: 97–104.

    PubMed  Google Scholar 

  53. Sivan, A., M. Szanto, and V. Pavlov (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biotechnol. 72: 346–352.

    PubMed  CAS  Google Scholar 

  54. Azeko, S. T., G. A. Etuk-Udo, O. S. Odusanya, K. Malatesta, N. Anuku, and W. O. Soboyejo (2015) Biodegradation of linear low density polyethylene by Serratia marcescens subsp. marcescens and its cell free extracts. Waste Biomass Valorization 6: 1047–1057.

    CAS  Google Scholar 

  55. Divyalakshmi, S. and A. Subhashini (2016) Screening and isolation of polyethylene degrading bacteria from various soil environments. IOSR J. Environ. Sci. Toxicol. Food Technol. 10: 1–7.

    CAS  Google Scholar 

  56. Mohanan, N., Z. Montazer, P. K. Sharma, and D. B. Levin (2020) Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 11: 580709.

    PubMed  PubMed Central  Google Scholar 

  57. Liu, Y., C. Li, L. Huang, Y. He, T. Zhao, B. Han, and X. Jia (2017) Combination of a crude oil-degrading bacterial consortium under the guidance of strain tolerance and a pilot-scale degradation test. Chin. J. Chem. Eng. 25: 1838–1846.

    Google Scholar 

  58. Medić, A., M. Lješević, H. Inui, V. Beškoski, I. Kojić, K. Stojanović, and I. Karadžić (2020) Efficient biodegradation of petroleum n-alkanes and polycyclic aromatic hydrocarbons by polyextremophilic Pseudomonas aeruginosa san ai with multidegradative capacity. RSC Adv. 10: 14060–14070.

    PubMed  PubMed Central  Google Scholar 

  59. Contesini, F. J., R. R. Melo, and H. H. Sato (2018) An overview of Bacillus proteases: from production to application. Crit. Rev. Biotechnol. 38: 321–334.

    PubMed  CAS  Google Scholar 

  60. Seneviratne, G., N. S. Tennakoon, M. L. M. A. W. Weerasekara, and K. A. Nandasena (2006) Polyethylene biodegradation by a developed Penicillium-Bacillus biofilm. Curr. Sci. 90: 20–21.

    CAS  Google Scholar 

  61. Sen, S. K. and S. Raut (2015) Microbial degradation of low density polyethylene (LDPE): a review. J. Environ. Chem. Eng. 3: 462–473.

    Google Scholar 

  62. Arntzen, M. Ø., O. Bengtsson, A. Várnai, F. Delogu, G. Mathiesen, and V. G. H. Eijsink (2020) Quantitative comparison of the biomass-degrading enzyme repertoires of five filamentous fungi. Sci. Rep. 10: 20267.

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Vaksmaa, A., V. Hernando-Morales, E. Zeghal, and H. Niemann (2021) Microbial degradation of marine plastics: current state and future prospects. pp. 111–154. In: S. J. Joshi (ed.). Biotechnology for Smtainable Environment. Springer, Singapore.

    Google Scholar 

  64. Kershaw, M. J. and N. J. Talbot (1998) Hydrophobins and repellents: proteins with fundamental roles in fungal morphogenesis. Fungal Genet. Biol. 23: 18–33.

    PubMed  CAS  Google Scholar 

  65. Sowmya, H. V., B. Ramalingappa, G. Nayanashree, B. Thippeswamy, and M. Krishnappa (2015) Polyethylene degradation by fungal consortium. Int. J. Environ. Res. 9: 823–830.

    CAS  Google Scholar 

  66. Gao, R., R. Liu, and C. Sun (2022) A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 431: 128617.

    PubMed  CAS  Google Scholar 

  67. Gajendiran, A., S. Krishnamoorthy, and J. Abraham (2016) Microbial degradation of low-density polyethylene (LDPE) by Aspergillus clavatus strain JASK1 isolated from landfill soil. 3 Biotech 6: 52.

    PubMed  PubMed Central  Google Scholar 

  68. Alshehrei, F. (2017) Biodegradation of low density polyethylene by fungi isolated from Red Sea water. Int. J. Curr. Microbiol. Appl. Sci. 6: 1703–1709.

    Google Scholar 

  69. Rani, A., P. Singh, and R. Kumar (2020) Microbial deterioration of high-density polyethylene by selected microorganisms. J. Appl. Biol. Biotechnol. 8: 64–66.

    CAS  Google Scholar 

  70. Zahra, S., S. S. Abbas, M.-T. Mahsa, and N. Mohsen (2010) Biodegradation of low-density polyethylene (LDPE) by isolated fungi in solid waste medium. Waste Manag. 30: 396–401.

    PubMed  CAS  Google Scholar 

  71. Khruengsai, S., T. Sripahco, and P. Pripdeevech (2021) Low-density polyethylene film biodegradation potential by fungal species from Thailand. J. Fungi (Basel) 7: 594.

    PubMed  CAS  Google Scholar 

  72. Volke-Sepúlveda, T., G. Saucedo-Castañeda, M. Gutiérrez-Rojas, A. Manzur, and E. Favela-Torres (2002) Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. J. Appl. Polym. Sci. 83: 305–314.

    Google Scholar 

  73. Munir, E., R. S. M. Harefa, N. Priyani, and D. Suryanto (2018) Plastic degrading fungi Trichoderma viride and Aspergillus nomius isolated from local landfill soil in Medan. IOP Conf. Ser. Earth Environ. Sci. 126: 012145.

    Google Scholar 

  74. Pramila, R. and K. V. Ramesh (2011) Biodegradation of low density polyethylene (LDPE) by fungi isolated from marine water- a SEM analysis. Afr. J. Microbiol. Res. 5: 5013–5018.

    CAS  Google Scholar 

  75. Sheik, S., K. R. Chandrashekar, K. Swaroop, and H. M. Somashekarappa (2015) Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int. Biodeterior. Biodegradation 105: 21–29.

    CAS  Google Scholar 

  76. Das, M. P. and S. Kumar (2014) Microbial deterioration of low density polyethylene by Aspergillus and Fusarium sp. Int. J. Chemtech Res. 6: 299–305.

    Google Scholar 

  77. Balasubramanian, V., K. Natarajan, V. Rajeshkannan, and P. Perumal (2014) Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments. Environ. Sci. Pollut. Res. Int. 21: 12549–12562.

    PubMed  CAS  Google Scholar 

  78. Ojha, N., N. Pradhan, S. Singh, A. Barla, A. Shrivastava, P. Khatua, V. Rai, and S. Bose (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci. Rep. 7: 39515.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Yamada-Onodera, K., H. Mukumoto, Y. Katsuyaya, A. Saiganji, and Y. Tani (2001) Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym. Degrad. Stab. 72: 323–327.

    CAS  Google Scholar 

  80. Awasthi, S., N. Srivastava, T. Singh, D. Tiwary, and P. K. Mishra (2017) Biodegradation of thermally treated low density polyethylene by fungus Rhizopus oryzae NS 5. 3 Biotech 7: 73.

    PubMed  PubMed Central  Google Scholar 

  81. Paço, A., K. Duarte, J. P. da Costa, P. S. M. Santos, R. Pereira, M. E. Pereira, A. C. Freitas, A. C. Duarte, and T. A. P. Rocha-Santos (2017) Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci. Total Environ. 586: 10–15.

    PubMed  Google Scholar 

  82. Gulmine, J. V., P. R. Janissek, H. M. Heise, and L. Akcelrud (2002) Polyethylene characterization by FTIR. Polym. Test. 21:557–563.

    CAS  Google Scholar 

  83. Almond, J., P. Sugumaar, M. N. Wenzel, G. Hill, and C. Wallis (2020) Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. E-Polym. 20: 369–381.

    CAS  Google Scholar 

  84. Bredács, M., C. Barretta, L. F. Castillon, A. Frank, G. Oreski, G. Pinter, and S. Gergely (2021) Prediction of polyethylene density from FTIR and Raman spectroscopy using multivariate data analysis. Polym. Test. 104: 107406.

    Google Scholar 

  85. Montazer, Z., M. B. Habibi Najafi, and D. B. Levin (2020) Challenges with verifying microbial degradation of polyethylene. Polymers (Basel) 12: 123.

    PubMed  CAS  Google Scholar 

  86. Park, S. Y. and C. G. Kim (2019) Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site. Chemosphere 222: 527–533.

    PubMed  CAS  Google Scholar 

  87. Wang, P., T. Song, J. Bu, Y. Zhang, J. Liu, J. Zhao, T. Zhang, J. Xi, J. Xu, L. Li, and Y. Lin (2022) Does bacterial community succession within the polyethylene mulching film plastisphere drive biodegradation? Sci. Total Environ. 824: 153884.

    PubMed  CAS  Google Scholar 

  88. Gao, R. and C. Sun (2021) A marine bacterial community capable of degrading poly(ethylene terephthalate) and polyethylene. J. Hazard. Mater. 416: 125928.

    PubMed  CAS  Google Scholar 

  89. Esmaeili, A., A. A. Pourbabaee, H. A. Alikhani, F. Shabani, and L. Kumar (2014) Colonization and biodegradation of photo-oxidized low-density polyethylene (LDPE) by new strains of Aspergillus sp. and Lysinibacillus sp. Bioremediat. J. 18: 213–226.

    CAS  Google Scholar 

  90. Yin, C.-F., Y. Xu, and N.-Y. Zhou (2020) Biodegradation of polyethylene mulching films by a co-culture of Acinetobacter sp. strain NyZ450 and Bacillus sp. strain NyZ451 isolated from Tenebrio molitor larvae. Int. Biodeterior. Biodegradation 155: 105089.

    CAS  Google Scholar 

  91. Yeom, S. J., T. K. Le, and C. H. Yun (2022) P450-driven plastic-degrading synthetic bacteria. Trends Biotechnol. 40: 166–179.

    PubMed  CAS  Google Scholar 

  92. Jeon, H. J. and M. N. Kim (2016) Comparison of the functional characterization between alkane monooxygenases for low-molecular-weight polyethylene biodegradation. Int. Biodeterior. Biodegradation 114: 202–208.

    CAS  Google Scholar 

  93. Hou, L. and E. L. W. Majumder (2021) Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials (Basel) 14: 503.

    PubMed  CAS  Google Scholar 

  94. Sudheer, P. D. V. N., J. Yun, S. Chauhan, T. J. Kang, and K.-Y. Choi (2017) Screening, expression, and characterization of Baeyer-Villiger monooxygenases for the production of 9-(nonanoyloxy)nonanoic acid from oleic acid. Biotechnol. Bioprocess Eng. 22: 717–724.

    CAS  Google Scholar 

  95. Park, S.-T., K. Min, Y. S. Choi, and Y. J. Yoo (2012) Screening of stable cutinase from Fusarium solani pisi using plasmid display system. Biotechnol. Bioprocess Eng. 17: 506–511.

    CAS  Google Scholar 

  96. Woo, J.-M., Y.-S. Kang, S.-M. Lee, S. Park, and J.-B. Park (2022) Substrate-binding site engineering of Candida antarctica lipase B to improve selectivity for synthesis of 1-monoacyl-snglycerols. Biotechnol. Bioprocess Eng. 27: 234–243.

    CAS  Google Scholar 

  97. Schwibbert, K., F. Menzel, N. Epperlein, J. Bonse, and J. Krüger (2019) Bacterial adhesion on femtosecond laser-modified polyethylene. Materials (Basel) 12: 3107.

    PubMed  CAS  Google Scholar 

  98. Guo, S., I. Alshamy, K. T. Hughes, and F. F. V. Chevance (2014) Analysis of factors that affect FlgM-dependent type III secretion for protein purification with Salmonella enterica serovar Typhimurium. J. Bacteriol. 196: 2333–2347.

    PubMed  PubMed Central  Google Scholar 

  99. Behrendorff, J. B. Y. H., G. Borràs-Gas, and M. Pribil (2020) Synthetic protein scaffolding at biological membranes. Trends Biotechnol. 38: 432–446.

    PubMed  CAS  Google Scholar 

  100. Ricca, E., B. Brucher, and J. H. Schrittwieser (2011) Multi-enzymatic cascade reactions: overview and perspectives. Adv. Synth. Catal. 353: 2239–2262.

    CAS  Google Scholar 

  101. France, S. P., L. J. Hepworth, N. J. Turner, and S. L. Flitsch (2017) Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal. 7: 710–724.

    CAS  Google Scholar 

  102. Schrittwieser, J. H., S. Velikogne, M. Hall, and W. Kroutil (2018) Artificial biocatalytic linear cascades for preparation of organic molecules. Chem. Rev. 118: 270–348.

    PubMed  CAS  Google Scholar 

  103. Kuska, J. and E. O’Reilly (2020) Engineered biosynthetic pathways and biocatalytic cascades for sustainable synthesis. Curr. Opin. Chem. Biol. 58: 146–154.

    PubMed  CAS  Google Scholar 

  104. Seo, M.-J. and C. Schmidt-Dannert (2021) Organizing multienzyme systems into programmable materials for biocatalysis. Catalysts 11: 409.

    CAS  Google Scholar 

  105. Gad, S. and S. Ayakar (2021) Protein scaffolds: a tool for multi-enzyme assembly. Biotechnol. Rep. (Amst.) 32: e00670.

    PubMed  CAS  Google Scholar 

  106. Wang, P., X. Zhang, Y. Tao, X. Lv, S. Cheng, and C. Liu (2022) Improved l-phenylglycine synthesis by introducing an engineered cofactor self-sufficient system. Synth. Syst. Biotechnol. 7: 513–521.

    PubMed  CAS  Google Scholar 

  107. Liu, Y., D. P. Hickey, J.-Y. Guo, E. Earl, S. Abdellaoui, R. D. Milton, M. S. Sigman, S. D. Minteer, and S. C. Barton (2017) Substrate channeling in an artificial metabolon: a molecular dynamics blueprint for an experimental peptide bridge. ACS Catal. 7: 2486–2493.

    CAS  Google Scholar 

  108. Kang, W., T. Ma, M. Liu, J. Qu, Z. Liu, H. Zhang, B. Shi, S. Fu, J. Ma, L. T. F. Lai, S. He, J. Qu, S. Wing-Ngor Au, B. Ho Kang, W. C. Yu Lau, Z. Deng, J. Xia, and T. Liu (2019) Modular enzyme assembly for enhanced cascade biocatalysis and metabolic flux. Nat. Commun. 10: 4248.

    PubMed  PubMed Central  Google Scholar 

  109. Dueber, J. E., G. C. Wu, G. R. Malmirchegini, T. S. Moon, C. J. Petzold, A. V. Ullal, K. L. Prather, and J. D. Keasling (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27: 753–759.

    PubMed  CAS  Google Scholar 

  110. Hirakawa, H. and T. Nagamune (2010) Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. Chembiochem 11: 1517–1520.

    PubMed  CAS  Google Scholar 

  111. Keeble, A. H. and M. Howarth (2020) Power to the protein: enhancing and combining activities using the Spy toolbox. Chem. Sci. 11: 7281–7291.

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Veggiani, G., T. Nakamura, M. D. Brenner, R. V. Gayet, J. Yan, C. V. Robinson, and M. Howarth (2016) Programmable polyproteams built using twin peptide superglues. Proc. Natl. Acad. Sci. U. S. A. 113: 1202–1207.

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This paper was supported by the Enzyme engineering for next generation biorefinery (NRF-2022M3J5A1056169 and NRF-2022M3J5A1085239) from National Research Foundation (NRF) and NRF grant (NRF-2020R1C1C1004178 and NRF-2022R1C1C2003774) supported by the Korean Ministry of Science and ICT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Jin Yeom.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, MJ., Yun, SD., Kim, HW. et al. Polyethylene-biodegrading Microbes and Their Future Directions. Biotechnol Bioproc E 28, 977–989 (2023). https://doi.org/10.1007/s12257-022-0264-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0264-9

Keywords

Navigation