Skip to main content
Log in

Harnessing Cellular Organelles to Bring New Functionalities into Yeast

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Subcellular organelles in eukaryotes are unique and specialized physiochemical compartments that separate specific metabolic reactions from the rest of the cytosol, control an intricate metabolic network, and allow the cells to perform specific functions more efficiently. Recently, inspired by this compartmentalization strategy of cells, metabolic compartmentalization has received much attention from researchers in the fields of metabolic engineering and synthetic biology for transforming subcellular organelles into microfactories for the production of valuable chemicals. Here, we provide an overview of recent advances in yeast subcellular compartmentalization, highlighting the benefits of confining metabolic pathways spatially within particular subcellular organelles, including the endoplasmic reticulum, lipid droplets, mitochondria, peroxisomes, and cell walls. In addition to metabolic compartmentalization, we review emerging strategies for organelle engineering that have proven to be successful for overcoming the inherent capacity and volume constraints of organelles, thereby boosting the performance of the compartmentalized pathways. We also describe and compare various instances in which engineered organelles have been explored as compartments for biotechnological exploitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, J. and J. D. Keasling (2016) Engineering cellular metabolism. Cell 164: 1185–1197.

    CAS  PubMed  Google Scholar 

  2. Duran, L., J. M. López, and J. L. Avalos (2020) ¡Viva la mitochondria!: harnessing yeast mitochondria for chemical production. FEMS Yeast Res. 20: foaa037.

    CAS  PubMed  Google Scholar 

  3. Jiao, X., Y. Gu, P. Zhou, H. Yu, and L. Ye (2022) Recent advances in construction and regulation of yeast cell factories. World J. Microbiol. Biotechnol. 38: 57.

    PubMed  Google Scholar 

  4. Cao, X., S. Yang, C. Cao, and Y. J. Zhou (2020) Harnessing sub-organelle metabolism for biosynthesis of isoprenoids in yeast. Synth. Syst. Biotechnol. 5: 179–186.

    PubMed Central  PubMed  Google Scholar 

  5. Sweetlove, L. J. and A. R. Fernie (2018) The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat. Commun. 9: 2136.

    PubMed Central  PubMed  Google Scholar 

  6. Liu, Z., H. Moradi, S. Shi, and F. Darvishi (2021) Yeasts as microbial cell factories for sustainable production of biofuels. Renew. Sustain. Energy Rev. 143: 110907.

    CAS  Google Scholar 

  7. Kavšček, M., M. Stražar, T. Curk, K. Natter, and U. Petrovič (2015) Yeast as a cell factory: current state and perspectives. Microb. Cell Fact. 14: 94.

    PubMed Central  PubMed  Google Scholar 

  8. Bar-Even, A. and D. Salah Tawfik (2013) Engineering specialized metabolic pathways—is there a room for enzyme improvements? Curr. Opin. Biotechnol. 24: 310–319.

    CAS  PubMed  Google Scholar 

  9. Choi, B. H., H. J. Kang, S. C. Kim, and P. C. Lee (2022) Organelle engineering in yeast: enhanced production of protopanaxadiol through manipulation of peroxisome proliferation in Saccharomyces cerevisiae. Microorganisms 10: 650.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Guirimand, G., N. Kulagina, N. Papon, T. Hasunuma, and V. Courdavault (2021) Innovative tools and strategies for optimizing yeast cell factories. Trends Biotechnol. 39: 488–504.

    CAS  PubMed  Google Scholar 

  11. Phillips, M. J. and G. K. Voeltz (2016) Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17: 69–82.

    CAS  PubMed  Google Scholar 

  12. Kim, J. E., I. S. Jang, S. H. Son, Y. J. Ko, B. K. Cho, S. C. Kim, and J. Y. Lee (2019) Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway. Metab. Eng. 56: 50–59.

    CAS  PubMed  Google Scholar 

  13. Papagiannidis, D., P. W. Bircham, C. Lüchtenborg, O. Pajonk, G Ruffini, B. Brügger, and S. Schuck (2021) Ice2 promotes ER membrane biogenesis in yeast by inhibiting the conserved lipin phosphatase complex. EMBO J. 40: e107958.

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Emmerstorfer, A., M. Wimmer-Teubenbacher, T. Wriessnegger, E. Leitner, M. Müller, I. Kaluzna, M. Schürmann, D. Mink, G. Zellnig, H. Schwab, and H. Pichler (2015) Over-expression of ICE2 stabilizes cytochrome P450 reductase in Saccharomyces cerevisiae and Pichia pastoris. Biotechnol. J. 10: 623–635.

    CAS  PubMed  Google Scholar 

  15. Arendt, P., K. Miettinen, J. Pollier, R. De Rycke, N. Callewaert, and A. Goossens (2017) An endoplasmic reticulum-engineered yeast platform for overproduction of triterpenoids. Metab. Eng. 40: 165–175.

    CAS  PubMed  Google Scholar 

  16. de Ruijter, J. C., E. V. Koskela, and A. D. Frey (2016) Enhancing antibody folding and secretion by tailoring the Saccharomyces cerevisiae endoplasmic reticulum. Microb. Cell Fact. 15: 87.

    PubMed Central  PubMed  Google Scholar 

  17. Besada-Lombana, P. B. and N. A. Da Silva (2019) Engineering the early secretory pathway for increased protein secretion in Saccharomyces cerevisiae. Metab. Eng. 55: 142–151.

    CAS  PubMed  Google Scholar 

  18. Thodey, K., S. Galanie, and C. D. Smolke (2014) A microbial biomanufacturing platform for natural and semisynthetic opioids. Nat. Chem. Biol. 10: 837–844.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Xu, P., K. Qiao, W. S. Ahn, and G. Stephanopoulos (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl. Acad. Sci. U. S. A. 113: 10848–10853.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Walther, T. C., J. Chung, and R. V. Farese Jr. (2017) Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33: 491–510.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Bagnato, C. and R. A. Igal (2003) Overexpression of diacylglycerol acyltransferase-1 reduces phospholipid synthesis, proliferation, and invasiveness in simian virus 40-transformed human lung fibroblasts. J. Biol. Chem. 278: 52203–52211.

    CAS  PubMed  Google Scholar 

  22. Yu, J. and P. Li (2017) The size matters: regulation of lipid storage by lipid droplet dynamics. Sci. China Life Sci. 60: 46–56.

    CAS  PubMed  Google Scholar 

  23. Olzmann, J. A. and P. Carvalho (2019) Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20: 137–155.

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Valachovic, M., M. Garaiova, R. Holic, and I. Hapala (2016) Squalene is lipotoxic to yeast cells defective in lipid droplet biogenesis. Biochem. Biophys. Res. Commun. 469: 1123–1128.

    CAS  PubMed  Google Scholar 

  25. Ma, T., B. Shi, Z. Ye, X. Li, M. Liu, Y. Chen, J. Xia, J. Nielsen, Z. Deng, and T. Liu (2019) Lipid engineering combined with systematic metabolic engineering of Saccharomyces cerevisiae for high-yield production of lycopene. Metab. Eng. 52: 134–142.

    CAS  PubMed  Google Scholar 

  26. Bu, X., J. Y. Lin, C. Q. Duan, M. A. Koffas, and G. L. Yan (2022) Dual regulation of lipid droplet-triacylglycerol metabolism and ERG9 expression for improved β-carotene production in Saccharomyces cerevisiae. Microb. Cell Fact. 21: 3.

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Gad, S. and S. Ayakar (2021) Protein scaffolds: a tool for multienzyme assembly. Biotechnol. Rep. (Amst.) 32: e00670.

    CAS  PubMed  Google Scholar 

  28. Yang, K., Y. Qiao, F. Li, Y. Xu, Y. Yan, C. Madzak, and J. Yan (2019) Subcellular engineering of lipase dependent pathways directed towards lipid related organelles for highly effectively compartmentalized biosynthesis of triacylglycerol derived products in Yarrowia lipolytica. Metab. Eng. 55: 231–238.

    CAS  PubMed  Google Scholar 

  29. Ma, Y., J. Li, S. Huang, and G. Stephanopoulos (2021) Targeting pathway expression to subcellular organelles improves astaxanthin synthesis in Yarrowia lipolytica. Metab. Eng. 68: 152–161.

    CAS  PubMed  Google Scholar 

  30. Lin, J. L., J. Zhu, and I. Wheeldon (2017) Synthetic protein scaffolds for biosynthetic pathway colocalization on lipid droplet membranes. ACS Synth. Biol. 6: 1534–1544.

    CAS  PubMed  Google Scholar 

  31. Montaño López, J., L. Duran, and J. L. Avalos (2022) Physiological limitations and opportunities in microbial metabolic engineering. Nat. Rev. Microbiol. 20: 35–48.

    PubMed  Google Scholar 

  32. Avalos, J. L., G. R. Fink, and G. Stephanopoulos (2013) Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols. Nat. Biotechnol. 31: 335–341.

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Yee, D. A., A. B. DeNicola, J. M. Billingsley, J. G. Creso, V. Subrahmanyam, and Y. Tang (2019) Engineered mitochondrial production of monoterpenes in Saccharomyces cerevisiae. Metab. Eng. 55: 76–84.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Bottje, W. G. (2019) Oxidative metabolism and efficiency: the delicate balancing act of mitochondria. Poult. Sci. 98: 4223–4230.

    CAS  PubMed  Google Scholar 

  35. Lane, S., Y. Zhang, E. J. Yun, L. Ziolkowski, G. Zhang, Y. S. Jin, and J. L. Avalos (2020) Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 117: 372–381.

    CAS  PubMed  Google Scholar 

  36. Weinert, B. T., V. Iesmantavicius, T. Moustafa, C. Schölz, S. A. Wagner, C. Magnes, R. Zechner, and C. Choudhary (2014) Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol. Syst. Biol. 10: 716. (Erratum published 2015, Mol. Syst. Biol. 11: 833)

    PubMed Central  PubMed  Google Scholar 

  37. Farhi, M., E. Marhevka, T. Masci, E. Marcos, Y. Eyal, M. Ovadis, H. Abeliovich, and A. Vainstein (2011) Harnessing yeast subcellular compartments for the production of plant terpenoids. Metab. Eng. 13: 474–481.

    CAS  PubMed  Google Scholar 

  38. Yuan, J. and C.-B. Ching (2016) Mitochondrial acetyl-CoA utilization pathway for terpenoid productions. Metab. Eng. 38: 303–309.

    CAS  PubMed  Google Scholar 

  39. Lv, X., F. Wang, P. Zhou, L. Ye, W. Xie, H. Xu, and H. Yu (2016) Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat. Commun. 7: 12851.

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Zhu, Z.-T., M.-M. Du, B. Gao, X.-Y. Tao, M. Zhao, Y.-H. Ren, F.-Q. Wang, and D.-Z. Wei (2021) Metabolic compartmentalization in yeast mitochondria: burden and solution for squalene overproduction. Metab. Eng. 68: 232–245.

    CAS  PubMed  Google Scholar 

  41. Joshi, A. S. and S. Cohen (2019) Lipid droplet and peroxisome biogenesis: do they go hand-in-hand? Front. Cell Dev. Biol. 7: 92.

    PubMed Central  PubMed  Google Scholar 

  42. Kohlwein, S. D., M. Veenhuis, and I. J. van der Klei (2013) Lipid droplets and peroxisomes: key players in cellular lipid homeostasis or a matter of fat—store’ em up or burn’ em down. Genetics 193: 1–50.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Saraya, R., M. Veenhuis, and I. J. van der Klei (2010) Peroxisomes as dynamic organelles: peroxisome abundance in yeast. FEBS J. 277: 3279–3288.

    CAS  PubMed  Google Scholar 

  44. Grewal, P. S., J. A. Samson, J. J. Baker, B. Choi, and J. E. Dueber (2021) Peroxisome compartmentalization of a toxic enzyme improves alkaloid production. Nat. Chem. Biol. 17: 96–103.

    CAS  PubMed  Google Scholar 

  45. Subramani, S. (1992) Targeting of proteins into the peroxisomal matrix. J. Membr. Biol. 125: 99–106.

    CAS  PubMed  Google Scholar 

  46. Zhou, Y. J., N. A. Buijs, Z. Zhu, D. O. Gómez, A. Boonsombuti, V. Siewers, and J. Nielsen (2016) Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J. Am. Chem. Soc. 138: 15368–15377.

    CAS  PubMed  Google Scholar 

  47. Liu, G.-S., T. Li, W. Zhou, M. Jiang, X.-Y. Tao, M. Liu, M. Zhao, Y.-H. Ren, B. Gao, F.-Q. Wang, and D.-Z. Wei (2020) The yeast peroxisome: a dynamic storage depot and subcellular factory for squalene overproduction. Metab. Eng. 57: 151–161.

    PubMed  Google Scholar 

  48. Dusséaux, S., W. T. Wajn, Y. Liu, C. Ignea, and S. C. Kampranis (2020) Transforming yeast peroxisomes into microfactories for the efficient production of high-value isoprenoids. Proc. Natl. Acad. Sci. U. S. A. 117: 31789–31799.

    PubMed Central  PubMed  Google Scholar 

  49. Zhang, C., M. Li, G.-R. Zhao, and W. Lu (2020) Harnessing yeast peroxisomes and cytosol acetyl-CoA for sesquiterpene α-humulene production. J. Agric. Food Chem. 68: 1382–1389.

    CAS  PubMed  Google Scholar 

  50. Teymennet-Ramírez, K. V., F. Martínez-Morales, and M. R. Trejo-Hernández (2022) Yeast surface display system: strategies for improvement and biotechnological applications. Front. Bioeng. Biotechnol. 9: 794742.

    PubMed Central  PubMed  Google Scholar 

  51. Anandharaj, M., Y.-J. Lin, R. P. Rani, E. K. Nadendla, M.-C. Ho, C.-C. Huang, J.-F. Cheng, J.-J. Chang, and W.-H. Li (2020) Constructing a yeast to express the largest cellulosome complex on the cell surface. Proc. Natl. Acad. Sci. U. S. A. 117: 2385–2394.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Guirimand, G., K. Inokuma, T. Bamba, M. Matsuda, K. Morita, K. Sasaki, C. Ogino, J.-G. Berrin, T. Hasunuma, and A. Kondo (2019) Cell-surface display technology and metabolic engineering of Saccharomyces cerevisiae for enhancing xylitol production from woody biomass. Green Chem. 21: 1795–1808.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Research Program (NRF-2021R1A2C2008074) through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science, ICT (MSIT). S.Y.M., S.-H.S. and J.Y.L. acknowledge funding from Korea Research Institute of Chemical Technology through the Core Program (SS2342-10). Figures were prepared using BioRender.Com for scientific illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Young Lee.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S.Y., Son, SH., Oh, S.S. et al. Harnessing Cellular Organelles to Bring New Functionalities into Yeast. Biotechnol Bioproc E 28, 936–948 (2023). https://doi.org/10.1007/s12257-022-0195-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0195-5

Keywords

Navigation