Skip to main content
Log in

Activation of Heme Oxygenase-1 is Involved in the Preventive Effect of Honokiol against Oxidative Damage in Human Retinal Pigment Epithelial Cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Previous studies have shown that honokiol, a bioactive compound originated from the Magnolia, has beneficial effects on various chronic diseases. Although our previous study has demonstrated that honokiol effectively protects C2C12 myoblasts against hydrogen peroxide (H2O2)-induced oxidative stress and cytotoxicity, the antioxidant mechanism in human retinal pigment epithelial (RPE) cells has not been reported yet. Therefore, this study investigates whether honokiol attenuate cytotoxicity of H2O2 to human RPE ARPE-19 cells. Our results showed that H2O2-induced loss of cell viability and increase of reactive oxygen species production in ARPE-19 cells were significantly alleviated by honokiol, which was associated with increased phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulation of heme oxygenase-1 (HO-1). In addition, honokiol markedly attenuated DNA damage and G2/M phase cell cycle arrest and improved apoptosis in H2O2-treated ARPE-19 cells. Furthermore, mitochondrial dysfunction by H2O2 was reversed by honokiol through preservation of mitochondrial membrane potential, decrease of Bax/Bcl-2 expression ratio, and inhibition of cytochrome c release into the cytoplasm. However, zinc protoporphyrin, an inhibitor of HO-1, significantly abrogated these preventive effects, suggesting a critical role of Nrf2/HO-1 in the antioxidant activity of honokiol. Taken together, these results demonstrate that activation of Nrf2/HO-1 antioxidant signaling by honokiol could rescue ARPE-19 cells from oxidative damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim, J., Y. J. Lee, and J. Y. Won (2021) Molecular mechanisms of retinal pigment epithelium dysfunction in age-related macular degeneration. Int. J. Mol. Sci. 22: 12298.

    Article  CAS  Google Scholar 

  2. Chichagova, V., D. Hallam, J. Collin, D. Zerti, B. Dorgau, M. Felemban, M. Lako, and D. H. Steel (2018) Cellular regeneration strategies for macular degeneration: past, present and future. Eye (Lond.) 32: 946–971.

    Article  Google Scholar 

  3. Léveillard, T., N. J. Philp, and F. Sennlaub (2019) Is retinal metabolic dysfunction at the center of the pathogenesis of age-related macular degeneration? Int. J. Mol. Sci. 20: 762.

    Article  Google Scholar 

  4. Sadda, S. R., R. Guymer, J. M. Monés, A. Tufail, and G. J. Jaffe (2020) Anti-vascular endothelial growth factor use and atrophy in neovascular age-related macular degeneration: systematic literature review and expert opinion. Ophthalmology 127: 648–659.

    Article  Google Scholar 

  5. Wang, P., E. K. Chin, and D. Almeida (2021) Antioxidants for the treatment of retinal disease: summary of recent evidence. Clin. Ophthalmol. 15: 1621–1628.

    Article  Google Scholar 

  6. Toma, C., S. De Cillà, A. Palumbo, D. P. Garhwal, and E. Grossini (2021) Oxidative and nitrosative stress in age-related macular degeneration: a review of their role in different stages of disease. Antioxidants (Basel) 10: 653.

    Article  CAS  Google Scholar 

  7. Karakuş, M. M. and U. K. Çalışkan (2021) Phytotherapeutic and natural compound applications for age-related, inflammatory and serious eye ailments. Curr. Mol. Pharmacol. 14: 689–713.

    Article  Google Scholar 

  8. Ikonne, E. U., V. O. Ikpeazu, and E. A. Ugbogu (2020) The potential health benefits of dietary natural plant products in age related eye diseases. Heliyon 6: e04408. (Erratum published 2021, Heliyon 7: e07069)

    Article  Google Scholar 

  9. Rauf, A., A. Olatunde, M. Imran, F. A. Alhumaydhi, A. S. M. Aljohani, S. A. Khan, M. S. Uddin, S. Mitra, T. B. Emran, M. Khayrullin, M. Rebezov, M. A. Kamal, and M. A. Shariati (2021) Honokiol: a review of its pharmacological potential and therapeutic insights. Phytomedicine 90: 153647. (Erratum published 2021, Phytomedicine 92: 153769)

    Article  CAS  Google Scholar 

  10. Ong, C. P., W. L. Lee, Y. Q. Tang, and W. H. Yap (2019) Honokiol: a review of its anticancer potential and mechanisms. Cancers (Basel) 12: 48.

    Article  Google Scholar 

  11. Yuan, Y., X. Zhou, Y. Wang, Y. Wang, X. Teng, and S. Wang (2020) Cardiovascular modulating effects of magnolol and honokiol, two polyphenolic compounds from traditional Chinese Medicine-Magnolia officinalis. Curr. Drug Targets 21: 559–572.

    Article  CAS  Google Scholar 

  12. Talarek, S., J. Listos, D. Barreca, E. Tellone, A. Sureda, S. F. Nabavi, N. Braidy, and S. M. Nabavi (2017) Neuroprotective effects of honokiol: from chemistry to medicine. Biofactors 43: 760–769.

    Article  CAS  Google Scholar 

  13. Rauf, A., S. Patel, M. Imran, A. Maalik, M. U. Arshad, F. Saeed, Y. N. Mabkhot, S. S. Al-Showiman, N. Ahmad, and E. Elsharkawy (2018) Honokiol: an anticancer lignan. Biomed. Pharmacother. 107: 555–562.

    Article  CAS  Google Scholar 

  14. Sarrica, A., N. Kirika, M. Romeo, M. Salmona, and L. Diomede (2018) Safety and toxicology of magnolol and honokiol. Planta Med. 84: 1151–1164.

    Article  CAS  Google Scholar 

  15. Liu, X., Y. Gu, Y. Bian, D. Cai, Y. Li, Y. Zhao, Z. Zhang, M. Xue, and L. Zhang (2021) Honokiol induces paraptosis-like cell death of acute promyelocytic leukemia via mTOR & MAPK signaling pathways activation. Apoptosis 26: 195–208.

    Article  CAS  Google Scholar 

  16. Huang, K., Y. Chen, R. Zhang, Y. Wu, Y. Ma, X. Fang, and S. Shen (2018) Honokiol induces apoptosis and autophagy via the ROS/ERK1/2 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cell Death Dis. 9: 157.

    Article  Google Scholar 

  17. Ye, H. and Y. Meng (2021) Honokiol regulates endoplasmic reticulum stress by promoting the activation of the sirtuin 1-mediated protein kinase B pathway and ameliorates high glucose/high fat-induced dysfunction in human umbilical vein endothelial cells. Endocr. J. 68: 981–992.

    Article  CAS  Google Scholar 

  18. Liao, G., Z. Zhao, H. Yang, and X. Li (2020) Honokiol ameliorates radiation-induced brain injury via the activation of SIRT3. J. Int. Med. Res. 48: 300060520963993.

    Article  CAS  Google Scholar 

  19. Park, C., S. H. Choi, J. W. Jeong, M. H. Han, H. Lee, S. H. Hong, G. Y. Kim, S. K. Moon, W. J. Kim, and Y. H. Choi (2019) Honokiol ameliorates oxidative stress-induced DNA damage and apoptosis of c2c12 myoblasts by ROS generation and mitochondrial pathway. Anim. Cells Syst. (Seoul) 24: 60–68.

    Article  Google Scholar 

  20. Liu, Y., J. Zhou, Y. Luo, J. Li, L. Shang, F. Zhou, and S. Yang (2021) Honokiol alleviates LPS-induced acute lung injury by inhibiting NLRP3 inflammasome-mediated pyroptosis via Nrf2 activation in vitro and in vivo. Chin. Med. 16: 127.

    Article  CAS  Google Scholar 

  21. Zhai, T., W. Xu, Y. Liu, K. Qian, Y. Xiong, and Y. Chen (2020) Honokiol alleviates methionine-choline deficient diet-induced hepatic steatosis and oxidative stress in C57BL/6 mice by regulating CFLAR-JNK pathway. Oxid. Med. Cell. Longev. 2020: 2313641.

    Article  Google Scholar 

  22. Vavilala, D. T., V. K. Ponnaluri, D. Kanjilal, and M. Mukherji (2014) Evaluation of anti-HIF and anti-angiogenic properties of honokiol for the treatment of ocular neovascular diseases. PLoS One 9: e113717.

    Article  Google Scholar 

  23. Kim, M. Y., Y. W. Choi, and H. S. Hwang (2021) Regulatory effect on skin differentiation by mevastatin in psoriasis model using TNF-α and IL-17 induced HaCaT cells. Biotechnol. Bioprocess Eng. 26: 348–358.

    Article  CAS  Google Scholar 

  24. Noh, Y., J. H. Ahn, J. W. Lee, J. Hong, T. K. Lee, B. Kim, S. S. Kim, and M. H. Won (2020) Brain Factor-7® improves learning and memory deficits and attenuates ischemic brain damage by reduction of ROS generation in stroke in vivo and in vitro. Lab. Anim. Res. 36: 24.

    Article  Google Scholar 

  25. Kim, M. and A. Moon (2021) A curcumin analog CA-5f inhibits urokinase-type plasminogen activator and invasive phenotype of triple-negative breast cancer cells. Toxicol. Res. 38: 19–26.

    Article  Google Scholar 

  26. Volobaev, V. P., E. S. Serdyukova, E. E. Kalyuzhnaya, E. A. Schetnikova, A. D. Korotkova, A. A. Naik, S. N. Bach, A. Y. Prosekov, and A. V. Larionov (2020) Investigation of the genotoxic effects of fluoride on a bone tissue model. Toxicol. Res. 36: 337–342.

    Article  CAS  Google Scholar 

  27. Lee, H., D. H. Kim, J. H. Kim, S. K. Park, J. W. Jeong, M. Y. Kim, S. H. Hong, K. S. Song, G. Y. Kim, J. W. Hyun, and Y. H. Choi (2021) Urban aerosol particulate matter promotes necrosis and autophagy via reactive oxygen species-mediated cellular disorders that are accompanied by cell cycle arrest in retinal pigment epithelial cells. Antioxidants (Basel) 10: 149.

    Article  CAS  Google Scholar 

  28. Sim, K. H., M.-S. Shu, S. Kim, J.-Y. Kim, B.-Y. Choi, and Y. J. Lee (2021) Cilostazol induces apoptosis and inhibits proliferation of hepatocellular carcinoma cells by activating AMPK. Biotechnol. Bioprocess Eng. 26: 776–785.

    Article  CAS  Google Scholar 

  29. Liu, Z., G. Ouyang, W. Lu, and H. Zhang (2021) Long non-coding RNA HOTAIR promotes hepatocellular carcinoma progression by regulating miR-526b-3p/DHX33 axis. Genes Genomics 43: 857–868.

    Article  CAS  Google Scholar 

  30. Zhao, B., Z. Wang, J. Han, G. Wei, B. Yi, and Z. Li (2020) Rhizoma Paridis total saponins alleviate H2O2-induced oxidative stress injury by upregulating the Nrf2 pathway. Mol. Med. Rep. 21: 220–228.

    CAS  Google Scholar 

  31. Szabo, I., M. Zoratti, and L. Biasutto (2021) Targeting mitochondrial ion channels for cancer therapy. Redox Biol. 42: 101846.

    Article  CAS  Google Scholar 

  32. Kim, D. H., J. H. Kim, H. Hwangbo, S. Y. Kim, S. Y. Ji, M. Y. Kim, H. J. Cha, C. Park, S. H. Hong, G. Y. Kim, S. K. Park, J. W. Jeong, M. Y. Kim, Y. H. Choi, and H. Lee (2021) Spermidine attenuates oxidative stress-induced apoptosis via blocking Ca2+ overload in retinal pigment epithelial cells independently of ROS. Int. J. Mol. Sci. 22: 1361.

    Article  CAS  Google Scholar 

  33. Liu, H., W. Liu, X. Zhou, C. Long, X. Kuang, J. Hu, Y. Tang, L. Liu, J. He, Z. Huang, Y. Fan, G. Jin, Q. Zhang, and H. Shen (2017) Protective effect of lutein on ARPE-19 cells upon H2O2-induced G2/M arrest. Mol. Med. Rep. 16: 2069–2074.

    Article  CAS  Google Scholar 

  34. Dammak, A., F. Huete-Toral, C. Carpena-Torres, A. Martin-Gil, C. Pastrana, and G. Carracedo (2021) From oxidative stress to inflammation in the posterior ocular diseases: diagnosis and treatment. Pharmaceutics 13: 1376.

    Article  CAS  Google Scholar 

  35. Chan, T. C., J. L. Wilkinson Berka, D. Deliyanti, D. Hunter, A. Fung, G. Liew, and A. White (2020) The role of reactive oxygen species in the pathogenesis and treatment of retinal diseases. Exp. Eye Res. 201: 108255.

    Article  CAS  Google Scholar 

  36. Tang, P., J. M. Gu, Z. A. Xie, Y. Gu, Z. W. Jie, K. M. Huang, J. Y. Wang, S. W. Fan, X. S. Jiang, and Z. J. Hu (2018) Honokiol alleviates the degeneration of intervertebral disc via suppressing the activation of TXNIP-NLRP3 inflammasome signal pathway. Free Radic. Biol. Med. 120: 368–379.

    Article  CAS  Google Scholar 

  37. Mahendra, C. K. L. T. H. Tan, P. Pusparajah, T. T. Htar, L. H. Chuah, V. S. Lee, L. E. Low, S. Y. Tang, K. G. Chan, and B. H. Goh (2020) Detrimental effects of UVB on retinal pigment epithelial cells and its role in age-related macular degeneration. Oxid. Med. Cell. Longev. 2020: 1904178.

    Article  Google Scholar 

  38. Park, C., H. Lee, S. H. Hong, J. H. Kim, S. K. Park, J. W. Jeong, G. Y. Kim, J. W. Hyun, S. J. Yun, B. W. Kim, W. J. Kim, and Y. H. Choi (2019) Protective effect of diphlorethohydroxycarmalol against oxidative stress-induced DNA damage and apoptosis in retinal pigment epithelial cells. Cutan. Ocul. Toxicol. 38: 298–308.

    Article  CAS  Google Scholar 

  39. Ulasov, A. V., A. A. Rosenkranz, G. P. Georgiev, and A. S. Sobolev (2022) Nrf2/Keap1/ARE signaling: towards specific regulation. Life Sci. 291: 120111.

    Article  CAS  Google Scholar 

  40. Cai, Z. Y., M. D. Fu, K. Liu, and X. C. Duan (2021) Therapeutic effect of Keap1-Nrf2-ARE pathway-related drugs on age-related eye diseases through anti-oxidative stress. Int. J. Ophthalmol. 14: 1260–1273.

    Article  Google Scholar 

  41. Tavakkoli, A., M. Iranshahi, S. H. Hasheminezhad, A. W. Hayes, and G. Karimi (2019) The neuroprotective activities of natural products through the Nrf2 upregulation. Phytother. Res. 33: 2256–2273.

    Article  CAS  Google Scholar 

  42. Zhang, Y., Z. Zhao, X. Zhao, H. Xie, C. Zhang, X. Sun, and J. Zhang (2022) HMGB2 causes photoreceptor death via down-regulating Nrf2/HO-1 and up-regulating NF-κB/NLRP3 signaling pathways in light-induced retinal degeneration model. Free Radic. Biol. Med. 181: 14–28.

    Article  CAS  Google Scholar 

  43. Laspas, P., M. B. Zhutdieva, C. Brochhausen, A. Musayeva, J. K. Zadeh, N. Pfeiffer, N. Xia, H. Li, J. Wess, and A. Gericke (2019) The M1 muscarinic acetylcholine receptor subtype is important for retinal neuron survival in aging mice. Sci. Rep. 9: 5222.

    Article  Google Scholar 

  44. Li, L., G. Du, D. Wang, J. Zhou, G. Jiang, and H. Jiang (2017) Overexpression of heme oxygenase-1 in mesenchymal stem cells augments their protection on retinal cells in vitro and attenuates retinal ischemia/reperfusion injury in vivo against oxidative stress. Stem Cells Int. 2017: 4985323.

    Article  Google Scholar 

  45. Dadsena, S., L. E. King, and A. J. García-Sáez (2021) Apoptosis regulation at the mitochondria membrane level. Biochim. Biophys. Acta Biomembr. 1863: 183716.

    Article  CAS  Google Scholar 

  46. Senichkin, V. V., N. V. Pervushin, A. P. Zuev, B. Zhivotovsky, and G. S. Kopeina (2020) Targeting Bcl-2 family proteins: what, where, when? Biochemistry (Mosc.) 85: 1210–1226.

    Article  CAS  Google Scholar 

  47. Niture, S. K. and A. K. Jaiswal (2012) Nrf2 protein up-regulates antiapoptotic protein Bcl-2 and prevents cellular apoptosis. J. Biol. Chem. 287: 9873–9886.

    Article  CAS  Google Scholar 

  48. Rowan, S., S. Jiang, M. L. Chang, J. Volkin, C. Cassalman, K. M. Smith, M. D. Streeter, D. A. Spiegel, C. Moreira-Neto, N. Rabbani, P. J. Thornalley, D. E. Smith, N. K. Waheed, and A. Taylor (2020) A low glycemic diet protects disease-prone Nrf2-deficient mice against age-related macular degeneration. Free Radic. Biol. Med. 150: 75–86.

    Article  CAS  Google Scholar 

  49. Zhao, Z., P. Xu, Z. Jie, Y. Zuo, B. Yu, L. Soong, J. Sun, Y. Chen, and J. Cai (2014) γδ T cells as a major source of IL-17 production during age-dependent RPE degeneration. Invest. Ophthalmol. Vis. Sci. 55: 6580–6589.

    Article  CAS  Google Scholar 

  50. Zhao, Z., Y. Chen, J. Wang, P. Sternberg, M. L. Freeman, H. E. Grossniklaus, and J. Cai (2011) Age-related retinopathy in NRF2-deficient mice. PLoS One 6: e19456.

    Article  CAS  Google Scholar 

  51. Hyttinen, J. M. T., R. Kannan, S. Felszeghy, M. Niittykoski, A. Salminen, and K. Kaarniranta (2019) The regulation of NFE2L2 (NRF2) signalling and epithelial-to-mesenchymal transition in age-related macular degeneration pathology. Int. J. Mol. Sci. 20: 5800.

    Article  CAS  Google Scholar 

  52. Bellezza, I. (2018) Oxidative stress in age-related macular degeneration: Nrf2 as therapeutic target. Front. Pharmacol. 9: 1280.

    Article  CAS  Google Scholar 

  53. Datta, S., M. Cano, K. Ebrahimi, L. Wang, and J. T. Handa (2017) The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD. Prog. Retin. Eye Res. 60: 201–218.

    Article  CAS  Google Scholar 

  54. Lambros, M. L. and S. M. Plafker (2016) Oxidative stress and the Nrf2 anti-oxidant transcription factor in age-related macular degeneration. Adv. Exp. Med. Biol. 854: 67–72.

    Article  CAS  Google Scholar 

  55. Zhang, J., H. Zhou, J. Chen, X. Lv, and H. Liu (2022) Aloperine protects human retinal pigment epithelial cells against hydrogen peroxide-induced oxidative stress and apoptosis through activation of Nrf2/HO-1 pathway. J. Recept. Signal Transduct. Res. 42: 88–94.

    Article  CAS  Google Scholar 

  56. Chen, W., Y. Ye, Z. Wu, J. Lin, Y. Wang, Q. Ding, X. Yang, W. Yang, B. Lin, and B. Lin (2021) Temporary upregulation of Nrf2 by naringenin alleviates oxidative damage in the retina and ARPE-19 cells. Oxid. Med. Cell. Longev. 2021: 4053276.

    Article  Google Scholar 

  57. Clementi, M. E., B. Sampaolese, F. Sciandra, and G. Tringali (2020) Punicalagin protects human retinal pigment epithelium cells from ultraviolet radiation-induced oxidative damage by activating Nrf2/HO-1 signaling pathway and reducing apoptosis. Antioxidants (Basel) 9: 473.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) Grant funded by the Korea government (NRF-2020R1A2C1099910 and NRF-2021R1A2C200954911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung Hyun Choi.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.H., Park, C., Hwangbo, H. et al. Activation of Heme Oxygenase-1 is Involved in the Preventive Effect of Honokiol against Oxidative Damage in Human Retinal Pigment Epithelial Cells. Biotechnol Bioproc E 27, 975–986 (2022). https://doi.org/10.1007/s12257-022-0174-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0174-x

Keywords

Navigation