Skip to main content

Physicochemical Characteristics and Biogas Production Potentials of Olive Flounder and Starry Flounder Wastes

Abstract

Olive flounder (OF) and Starry flounder (SF) are the commonly cultured fish species in the South Korea East Sea. Evaluation of whether those dead fish wastes are suitable for anaerobic digestion is required. The aim of this study was to characterize the physicochemical properties of each fraction which was flesh, bone, head, skin, viscera, and whole fish OF and SF and evaluate their biochemical methane potential (BMP). The results showed that both dead fish species’ wastes mainly contained proteins (48–75% of volatile solids [VS]) and lipids (19–40% of VS), whereas carbohydrates were little found (0.7–5% of VS). The BMP of each fraction was investigated in a mesophilic condition and the substrate-to-microbe ratio was 0.5 g CODsubstrate/g VSSinoculum. The results showed that the bone fractions in both OF and SF showed the highest methane yield with 0.37 and 0.38 L CH4/g CODadded, respectively whereas the viscera fractions of both fish species showed the lowest methane yield with 0.20 L CH4/g CODadded. The modified Gompertz model showed that the longest lag phase was observed in the bone fractions of OF and SF with 1.59 d and 2.62 d and the shortest lag phase was in the viscera fraction of OF and SF with 0.37 d and 0.58 d, respectively. The energy recovery of every fraction of both species ranged 43–69%. Principal component analysis indicated that the viscera fraction of OF and SF had different characteristics from the other fractions. This study suggests that dead fish wastes can be considered for biogas production.

This is a preview of subscription content, access via your institution.

References

  1. Venkiteshwaran, K., B. Bocher, J. Maki, and D. Zitomer (2015) Relating anaerobic digestion microbial community and process function: supplementary issue: water microbiology. Microbiol. Insights. 8s2: 37–44.

    Article  Google Scholar 

  2. Kim, M.-S., D.-H. Kim, and Y.-M. Yun (2017) Effect of operation temperature on anaerobic digestion of food waste: performance and microbial analysis. Fuel (Lond.) 209: 598–605.

    CAS  Article  Google Scholar 

  3. Park, Y. G. (2021) Study for the bio-CNG recovery of methane gas in the anaerobic co-digestion using Malaysian POME (palm oil mill effluent). Biotechnol. Bioprocess Eng. 26: 435–446.

    CAS  Article  Google Scholar 

  4. Wang, W. and D.-J. Lee (2021) Valorization of anaerobic digestion digestate: a prospect review. Bioresour. Technol. 323: 124626.

    CAS  Article  PubMed  Google Scholar 

  5. Kim, S.-S. and J.-D. Kim (2019) Overview on the development of aquaculture and aquafeed production in Korea. Aquac. Indones. 20: 1–7.

    Article  Google Scholar 

  6. Korean Statistical Information Service. http://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EW0005&conn_path=I3.

  7. Jee, B. Y., K. W. Shin, D. W. Lee, Y. J. Kim, and M. K. Lee (2014) Monitoring of the mortalities and medications in the inland farms of olive flounder, Paralichthys olivaceus, in South Korea. J. Fish Pathol. 27: 77–83.

    Article  Google Scholar 

  8. Dai, X., S. Chen, Y. Xue, L. Dai, N. Li, J. Takahashi, and W. Zhao (2015) Hygienic treatment and energy recovery of dead animals by high solid co-digestion with vinasse under mesophilic condition: feasibility study. J. Hazard. Mater. 297: 320–328.

    CAS  Article  PubMed  Google Scholar 

  9. Yulisa, A., J. Lee, S. H. Park, and S. Hwang (2022) Simultaneous effect of cathode potentials and magnetite concentrations on methanogenesis of acetic acid under different ammonia conditions. Environ. Eng. Res. 27: 210317.

    Article  Google Scholar 

  10. Ma, J., Q.-B. Zhao, L. L. M. Laurens, E. E. Jarvis, N. J. Nagle, S. Chen, and C. S. Frear (2015) Mechanism, kinetics and microbiology of inhibition caused by long-chain fatty acids in anaerobic digestion of algal biomass. Biotechnol. Biofuels. 8: 141.

    Article  PubMed  Google Scholar 

  11. Lim, S. J. and P. Fox (2013) Biochemical methane potential (BMP) test for thickened sludge using anaerobic granular sludge at different inoculum/substrate ratios. Biotechnol. Bioprocess Eng. 18: 306–312.

    CAS  Article  Google Scholar 

  12. Eiroa, M., J. C. Costa, M. M. Alves, C. Kennes, and M. C. Veiga (2012) Evaluation of the biomethane potential of solid fish waste. Waste Manag. 32: 1347–1352.

    CAS  Article  PubMed  Google Scholar 

  13. Bücker, F., M. Marder, M. R. Peiter, D. N. Lehn, V. M. Esquerdo, L. Antonio de Almeida Pinto, and O. Konrad (2020) Fish waste: an efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renew. Energy. 147: 798–805.

    Article  Google Scholar 

  14. Kafle, G. K. and S. H. Kim (2012) Evaluation of the biogas productivity potential of fish waste: a lab scale batch study. J. Biosyst. Eng. 37: 302–313.

    Article  Google Scholar 

  15. Angelidaki, I. and W. Sanders (2004) Assessment of the anaerobic biodegradability of macropollutants. Rev. Environ. Sci. Biotechnol. 3: 117–129.

    CAS  Article  Google Scholar 

  16. Ghaly, A. E., V. V. Ramakrishnan, M. S. Brooks, S. M. Budge, and D. Dave (2013) Fish processing wastes as a potential source of proteins, amino acids and oils: a critical review. J. Microb. Biochem. Technol. 5: 107–129.

    Google Scholar 

  17. Zhang, Y. and H. Li (2019) Energy recovery from wastewater treatment plants through sludge anaerobic digestion: effect of low-organic-content sludge. Environ. Sci. Pollut. Res. Int. 26: 30544–30553.

    CAS  Article  PubMed  Google Scholar 

  18. Abu Hanifa Jannat, M., S. Hyeok Park, C. Chairattanawat, A. Yulisa, and S. Hwang (2022) Effect of different microbial seeds on batch anaerobic digestion of fish waste. Bioresour. Technol. 349: 126834.

    CAS  Article  PubMed  Google Scholar 

  19. Álvarez, J. A., L. Otero, and J. M. Lema (2010) A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Bioresour. Technol. 101: 1153–1158.

    Article  PubMed  Google Scholar 

  20. Xue, S., Y. Wang, X. Lyu, N. Zhao, J. Song, X. Wang, and G. Yang (2020) Interactive effects of carbohydrate, lipid, protein composition and carbon/nitrogen ratio on biogas production of different food wastes. Bioresour. Technol. 312: 123566.

    CAS  Article  PubMed  Google Scholar 

  21. Montes, J. A., R. Leivas, D. Martínez-Prieto, and C. Rico (2019) Biogas production from the liquid waste of distilled gin production: optimization of UASB reactor performance with increasing organic loading rate for co-digestion with swine wastewater. Bioresour. Technol. 274: 43–47.

    CAS  Article  PubMed  Google Scholar 

  22. Bouallagui, H., H. Lahdheb, E. Ben Romdan, B. Rachdi, and M. Hamdi (2009) Improvement of fruit and vegetable waste anaerobic digestion performance and stability with co-substrates addition. J. Environ. Manage. 90: 1844–1849.

    CAS  Article  PubMed  Google Scholar 

  23. Wu, Y. and K. Song (2021) Anaerobic co-digestion of waste activated sludge and fish waste: methane production performance and mechanism analysis. J. Clean. Prod. 279: 123678.

    CAS  Article  Google Scholar 

  24. Palani kumar, M., A. Ruba Annathai, R. Jeya Shakila, and S. A. Shanmugam (2014) Proximate and major mineral composition of 23 medium sized marine fin fishes landed in the Thoothukudi Coast of India. J. Nutr. Food Sci. 4: 1000259.

    Google Scholar 

  25. Chen, Y., J. J. Cheng, and K. S. Creamer (2008) Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99: 4044–4064.

    CAS  Article  PubMed  Google Scholar 

  26. Zhao, J., Y. Li, S. Pan, Q. Tu, W. Dang, Z. Wang, and H. Zhu (2018) Effects of magnesium chloride on the anaerobic digestion and the implication on forward osmosis membrane bioreactor for sludge anaerobic digestion. Bioresour. Technol. 268: 700–707.

    CAS  Article  PubMed  Google Scholar 

  27. Zhang, H., Y. He, T. Jiang, and F. Yang (2011) Research on characteristics of aerobic granules treating petrochemical wastewater by acclimation and co-metabolism methods. Desalination. 279: 69–74.

    CAS  Article  Google Scholar 

  28. Donoso-Bravo, A., F. Bindels, P. A. Gerin, and A. Vande Wouwer (2015) Anaerobic biodegradability of fish remains: experimental investigation and parameter estimation. Water Sci. Technol. 71: 922–928.

    CAS  Article  PubMed  Google Scholar 

  29. Fernandez-Torres, R., M. A. B. Lopez, M. O. Consentino, M. C. Mochon, and M. R. Payan (2011) Enzymatic-microwave assisted extraction and high-performance liquid chromatography-mass spectrometry for the determination of selected veterinary antibiotics in fish and mussel samples. J. Pharm. Biomed. Anal. 54: 1146–1156.

    CAS  Article  PubMed  Google Scholar 

  30. Xiao, L., Y. Wang, E. Lichtfouse, Z. Li, P. S. Kumar, J. Liu, D. Feng, Q. Yang, and F. Liu (2021) Effect of antibiotics on the microbial efficiency of anaerobic digestion of wastewater: a review. Front. Microbiol. 11: 611613.

    Article  PubMed  Google Scholar 

  31. Saha, S., M. B. Kurade, G.-S. Ha, S. S. Lee, H.-S. Roh, Y.-K. Park, and B.-H. Jeon (2021) Syntrophic metabolism facilitates Methanosarcina-led methanation in the anaerobic digestion of lipidic slaughterhouse waste. Bioresour. Technol. 335: 125250.

    CAS  Article  PubMed  Google Scholar 

  32. Yan, B. H., A. Selvam, and J. W. C. Wong (2020) Bio-hydrogen and methane production from two-phase anaerobic digestion of food waste under the scheme of acidogenic off-gas reuse. Bioresour. Technol. 297: 122400.

    CAS  Article  PubMed  Google Scholar 

  33. Gruduls, A., K. Balina, K. Ivanovs, and F. Romagnoli (2018) Low temperature BMP tests using fish waste from invasive Round goby of the Baltic Sea. Agron. Res. 16: 398–409.

    Google Scholar 

  34. Malik, R. N., M. Z. Hashmi, and Y. Huma (2014) Heavy metal accumulation in edible fish species from Rawal Lake Reservoir, Pakistan. Environ. Sci. Pollut. Res. Int. 21: 1188–1196.

    CAS  Article  PubMed  Google Scholar 

  35. Garcia, N. H., A. Mattioli, A. Gil, N. Frison, F. Battista, and D. Bolzonella (2019) Evaluation of the methane potential of different agricultural and food processing substrates for improved biogas production in rural areas. Renew. Sustain. Energy Rev. 112: 1–10.

    CAS  Article  Google Scholar 

  36. Neves, L., E. Gonçalo, R. Oliveira, and M. M. Alves (2008) Influence of composition on the biomethanation potential of restaurant waste at mesophilic temperatures. Waste Manag. 28: 965–972.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Korea Institute of Energy Technology Evaluation and Planning, Republic of Korea (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 201830 10092790). This research was financially supported by the Korea Ministry of Environment as Waste to Energy-Recycling Human Resource Development Project (No. YL-WE-21-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seokhwan Hwang.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chairattanawat, C., Yulisa, A., Park, S.H. et al. Physicochemical Characteristics and Biogas Production Potentials of Olive Flounder and Starry Flounder Wastes. Biotechnol Bioproc E 27, 678–686 (2022). https://doi.org/10.1007/s12257-022-0102-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0102-0

Keywords

  • anaerobic digestion
  • fish waste
  • flounders
  • physicochemical characteristics
  • biochemical methane potential test
  • energy recovery