Skip to main content
Log in

Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2022

This article has been updated

Abstract

Terpenoids are a large variety of natural products with remarkable diverse biological functions, and have a wide range of applications in flavors, pharmaceuticals, biofuels, pigments, and so on. However, limited production of terpenoids from natural resources constrains their use of bulk commodity products. In vivo synthetic biosystem, harnessing living organisms to produce terpenoids, has been broadly used and in-depth reviewed for terpenoids production, which has inherent weaknesses, such as slow reaction rate, low product yield, toxic intermediates, and high separation cost. In vitro synthetic biosystem, harboring numerous enzymes and/or coenzymes assembled into an in vitro enzymatic bioreactions, can obviate part of problems associated with in vivo style. In this review, the general design of in vitro synthetic biosystem is presented with seven supporting examples: mevalonate, isoprene, limonene, pinene, farnesene, amorpha-4,11-diene and taxadiene. The efforts for the large-scale implementation of in vitro synthetic biosystem have been addressed to enzymes engineering, computational modeling and cofactors recycle. The review also discusses the challenges and solutions for the large-scale implementation of in vitro synthetic biosystem around enzymes stability and cofactors recycle. This review may suggest in vitro synthetic biosystems become a realistic option for the production of diverse valuable terpenoids, even expand to other commodity chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

Abbreviations

ACAT :

acetyl-CoA acetyltransferase

HMGS :

hydroxymethylglutaryl-CoA synthase

HMGR :

hydroxymethylglutaryl-CoA reductase

ackA :

acetate kinase

pta :

phosphate acetyltransferase

G6PDH :

glucose-6-phosphate dehydrogenase

GsPDH :

pyruvate dehydrogenase from Geobacillus stearothermophilus, which is specific for NAD+ to produce acetyl-CoA

LlNoxE :

NADH oxidase from Lactobacillus lactis

GsPyk :

pyruvate kinase from G. stearothermophilus

CoPASI:

a biochemical simulator

Hex:

hexokinase

Pdh :

pyruvate dehydrogenase

Pi :

inorganic phosphate

ck :

choline kinase

ipk :

isopentenyl kinase

idi :

isopentenyl pyrophosphate isomerase

ispA :

farnesyl pyrophosphate synthase

ggpps :

geranylgeranyl pyrophosphate synthase

tds :

taxadiene synthase.

GsPDH/LlNoxE system:

the system recycles free CoA and produce acetyl-CoA continuously.

Plackett-Burman experimental design:

this method is a technique for the optimization of reaction components.

Taguchi method:

this method is an engineering method with low cost and high benefit. For the purpose of experimental design, this method describes a large number of experimental situations to reduce experimental errors and enhance the efficiency and reproducibility of laboratory experiments.

ackA-pta pathway:

this pathway plays part in acetate metabolism.

References

  1. Wang, C., B. Zada, G. Wei, and S. W. Kim (2017) Metabolic engineering and synthetic biology approaches driving isoprenoid production in Escherichia coli. Bioresour. Technol. 241: 430–438.

    Article  CAS  Google Scholar 

  2. Zyad, A., M. Tilaoui, A. Jaafari, M. A. Oukerrou, and H. A. Mouse (2018) More insights into the pharmacological effects of artemisinin. Phytother. Res. 32: 216–229.

    Article  CAS  Google Scholar 

  3. Liu, T. and C. Khosla (2010) Chemistry. A balancing act for Taxol precursor pathways in E. coli. Science. 330: 44–45.

    Article  CAS  Google Scholar 

  4. Wang, C., M. Liwei, J. B. Park, S. H. Jeong, G. Wei, Y. Wang, and S. W. Kim (2018) Microbial platform for terpenoid production: Escherichia coli and yeast. Front. Microbiol. 9: 2460.

    Article  Google Scholar 

  5. Liao, P., A. Hemmerlin, T. J. Bach, and M. L. Chye (2016) The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol. Adv. 34: 697–713.

    Article  CAS  Google Scholar 

  6. Yang, L., C. Wang, J. Zhou, and S. W. Kim (2016) Combinatorial engineering of hybrid mevalonate pathways in Escherichia coli for protoilludene production. Microb. Cell Fact. 15: 14.

    Article  Google Scholar 

  7. Martin, V. J., D. J. Pitera, S. T. Withers, J. D. Newman, and J. D. Keasling (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat. Biotechnol. 21: 796–802.

    Article  CAS  Google Scholar 

  8. Lv, X., F. Wang, P. Zhou, L. Ye, W. Xie, H. Xu, and H. Yu (2016) Dual regulation of cytoplasmic and mitochondrial acetyl-CoA utilization for improved isoprene production in Saccharomyces cerevisiae. Nat. Commun. 7: 12851.

    Article  CAS  Google Scholar 

  9. Meadows, A. L., K. M. Hawkins, Y. Tsegaye, E. Antipov, Y. Kim, L. Raetz, R. H. Dahl, A. Tai, T. Mahatdejkul-Meadows, L. Xu, L. Zhao, M. S. Dasika, A. Murarka, J. Lenihan, D. Eng, J. S. Leng, C. L. Liu, J. W. Wenger, H. Jiang, L. Chao, P. Westfall, J. Lai, S. Ganesan, P. Jackson, R. Mans, D. Platt, C. D. Reeves, P. R. Saija, G. Wichmann, V. F. Holmes, K. Benjamin, P. W. Hill, T. S. Gardner, and A. E. Tsong (2016) Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature. 537: 694–697.

    Article  CAS  Google Scholar 

  10. Xia, P. F., H. Ling, J. L. Foo, and M. W. Chang (2019) Synthetic genetic circuits for programmable biological functionalities. Biotechnol. Adv. 37: 107393.

    Article  Google Scholar 

  11. Biggs, B. W., C. G. Lim, K. Sagliani, S. Shankar, G. Stephanopoulos, M. De Mey, and P. K. Ajikumar (2016) Overcoming heterologous protein interdependency to optimize P450-mediated Taxol precursor synthesis in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 113: 3209–3214.

    Article  CAS  Google Scholar 

  12. Nielsen, J. and J. D. Keasling (2016) Engineering cellular metabolism. Cell. 164: 1185–1197.

    Article  CAS  Google Scholar 

  13. Zhang, C. and K. Hong (2020) Production of terpenoids by synthetic biology approaches. Front. Bioeng. Biotechnol. 8: 347.

    Article  Google Scholar 

  14. Sarria, S., B. Wong, H. García Martín, J. D. Keasling, and P. Peralta-Yahya (2014) Microbial synthesis of pinene. ACS Synth. Biol. 3: 466–475.

    Article  CAS  Google Scholar 

  15. Zhang, Y. H. (2015) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol. Adv. 33: 1467–1483.

    Article  CAS  Google Scholar 

  16. Opgenorth, P. H., T. P. Korman, and J. U. Bowie (2014) A synthetic biochemistry molecular purge valve module that maintains redox balance. Nat. Commun. 5: 4113.

    Article  CAS  Google Scholar 

  17. Zhang, Y. H. (2010) Production of biocommodities and bioelectricity by cell-free synthetic enzymatic pathway biotransformations: challenges and opportunities. Biotechnol. Bioeng. 105: 663–677.

    CAS  Google Scholar 

  18. Karim, A. S., Q. M. Dudley, A. Juminaga, Y. Yuan, S. A. Crowe, J. T. Heggestad, S. Garg, T. Abdalla, W. S. Grubbe, B. J. Rasor, D. N. Coar, M. Torculas, M. Krein, F. E. Liew, A. Quattlebaum, R. O. Jensen, J. A. Stuart, S. D. Simpson, M. Köpke, and M. C. Jewett (2020) In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 16: 912–919.

    Article  CAS  Google Scholar 

  19. Kizer, L., D. J. Pitera, B. F. Pfleger, and J. D. Keasling (2008) Application of functional genomics to pathway optimization for increased isoprenoid production. Appl. Environ. Microbiol. 74: 3229–3241.

    Article  CAS  Google Scholar 

  20. You, C., T. Shi, Y. Li, P. Han, X. Zhou, and Y. P. Zhang (2017) An in vitro synthetic biology platform for the industrial biomanufacturing of myo-inositol from starch. Biotechnol. Bioeng. 114: 1855–1864.

    Article  CAS  Google Scholar 

  21. Dudley, Q. M., A. S. Karim, and M. C. Jewett (2015) Cell-free metabolic engineering: biomanufacturing beyond the cell. Biotechnol. J. 10: 69–82.

    Article  CAS  Google Scholar 

  22. Dudley, Q. M., K. C. Anderson, and M. C. Jewett (2016) Cell-free mixing of Escherichia coli crude extracts to prototype and rationally engineer high-titer mevalonate synthesis. ACS Synth. Biol. 5: 1578–1588.

    Article  CAS  Google Scholar 

  23. Korman, T. P., B. Sahachartsiri, D. Li, J. M. Vinokur, D. Eisenberg, and J. U. Bowie (2014) A synthetic biochemistry system for the in vitro production of isoprene from glycolysis intermediates. Protein Sci. 23: 576–585.

    Article  CAS  Google Scholar 

  24. Zhu, F., X. Zhong, M. Hu, L. Lu, Z. Deng, and T. Liu (2014) In vitro reconstitution of mevalonate pathway and targeted engineering of farnesene overproduction in Escherichia coli. Biotechnol. Bioeng. 111: 1396–1405.

    Article  CAS  Google Scholar 

  25. Chen, X., C. Zhang, R. Zou, K. Zhou, G. Stephanopoulos, and H. P. Too (2013) Statistical experimental design guided optimization of a one-pot biphasic multienzyme total synthesis of amorpha-4,11-diene. PLoS One. 8: e79650.

    Article  Google Scholar 

  26. Ward, V. C. A., A. O. Chatzivasileiou, and G. Stephanopoulos (2019) Cell free biosynthesis of isoprenoids from isopentenol. Biotechnol. Bioeng. 116: 3269–3281.

    Article  CAS  Google Scholar 

  27. You, C. and Y. H. Zhang (2013) Cell-free biosystems for biomanufacturing. Adv. Biochem. Eng. Biotechnol. 131: 89–119.

    CAS  Google Scholar 

  28. Opgenorth, P. H., T. P. Korman, and J. U. Bowie (2016) A synthetic biochemistry module for production of bio-based chemicals from glucose. Nat. Chem. Biol. 12: 393–395.

    Article  CAS  Google Scholar 

  29. Ye, X., K. Honda, T. Sakai, K. Okano, T. Omasa, R. Hirota, A. Kuroda, and H. Ohtake (2012) Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb. Cell Fact. 11: 120.

    Article  CAS  Google Scholar 

  30. Frank, A. and M. Groll (2017) The methylerythritol phosphate pathway to isoprenoids. Chem. Rev. 117: 5675–5703.

    Article  CAS  Google Scholar 

  31. Satowa, D., R. Fujiwara, S. Uchio, M. Nakano, C. Otomo, Y. Hirata, T. Matsumoto, S. Noda, T. Tanaka, and A. Kondo (2020) Metabolic engineering of E. coli for improving mevalonate production to promote NADPH regeneration and enhance acetyl-CoA supply. Biotechnol. Bioeng. 117: 2153–2164.

    Article  CAS  Google Scholar 

  32. Wegner, S. A., J. M. Chen, S. S. Ip, Y. Zhang, D. Dugar, and J. L. Avalos (2021) Engineering acetyl-CoA supply and ERG9 repression to enhance mevalonate production in Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 48: kuab050.

    Article  CAS  Google Scholar 

  33. Lindberg, P., S. Park, and A. Melis (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab. Eng. 12: 70–79.

    Article  CAS  Google Scholar 

  34. Chenault, H. K. and G. M. Whitesides (1987) Regeneration of nicotinamide cofactors for use in organic synthesis. Appl. Biochem. Biotechnol. 14: 147–197.

    Article  CAS  Google Scholar 

  35. Lau, M. W., C. Gunawan, V. Balan, and B. E. Dale (2010) Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A(LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol. Biofuels. 3: 11.

    Article  Google Scholar 

  36. Mukhtar, Y. M., M. Adu-Frimpong, X. Xu, and J. Yu (2018) Biochemical significance of limonene and its metabolites: future prospects for designing and developing highly potent anticancer drugs. Biosci. Rep. 38: BSR20181253.

    Article  Google Scholar 

  37. Alonso-Gutierrez, J., R. Chan, T. S. Batth, P. D. Adams, J. D. Keasling, C. J. Petzold, and T. S. Lee (2013) Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab. Eng. 19: 33–41.

    Article  CAS  Google Scholar 

  38. Jongedijk, E., K. Cankar, M. Buchhaupt, J. Schrader, H. Bouwmeester, and J. Beekwilder (2016) Biotechnological production of limonene in microorganisms. Appl. Microbiol. Biotechnol. 100: 2927–2938.

    Article  CAS  Google Scholar 

  39. Cao, X., Y. B. Lv, J. Chen, T. Imanaka, L. J. Wei, and Q. Hua (2016) Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction. Biotechnol. Biofuels. 9: 214.

    Article  Google Scholar 

  40. Cheng, S., X. Liu, G. Jiang, J. Wu, J. L. Zhang, D. Lei, Y. J. Yuan, J. Qiao, and G. R. Zhao (2019) Orthogonal engineering of biosynthetic pathway for efficient production of limonene in Saccharomyces cerevisiae. ACS Synth. Biol. 8: 968–975.

    Article  CAS  Google Scholar 

  41. Davies, F. K., V. H. Work, A. S. Beliaev, and M. C. Posewitz (2014) Engineering limonene and bisabolene production in wild type and a glycogen-deficient mutant of Synechococcus sp. PCC 7002. Front. Bioeng. Biotechnol. 2: 21.

    Article  Google Scholar 

  42. Chubukov, V., F. Mingardon, W. Schackwitz, E. E. Baidoo, J. Alonso-Gutierrez, Q. Hu, T. S. Lee, J. D. Keasling, and A. Mukhopadhyay (2015) Acute limonene toxicity in Escherichia coli is caused by limonene hydroperoxide and alleviated by a point mutation in alkyl hydroperoxidase AhpC. Appl. Environ. Microbiol. 81: 4690–4696.

    Article  CAS  Google Scholar 

  43. Tomko, T. A. and M. J. Dunlop (2015) Engineering improved bio-jet fuel tolerance in Escherichia coli using a transgenic library from the hydrocarbon-degrader Marinobacter aquaeolei. Biotechnol. Biofuels. 8: 165.

    Article  Google Scholar 

  44. Korman, T. P., P. H. Opgenorth, and J. U. Bowie (2017) A synthetic biochemistry platform for cell free production of monoterpenes from glucose. Nat. Commun. 8: 15526.

    Article  CAS  Google Scholar 

  45. Hoops, S., S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, and U. Kummer (2006) COPASI—a Complex pathway simulator. Bioinformatics. 22: 3067–3074.

    Article  CAS  Google Scholar 

  46. Willrodt, C., C. David, S. Cornelissen, B. Bühler, M. K. Julsing, and A. Schmid (2014) Engineering the productivity of recombinant Escherichia coli for limonene formation from glycerol in minimal media. Biotechnol. J. 9: 1000–1012.

    Article  CAS  Google Scholar 

  47. Rolf, J., M. K. Julsing, K. Rosenthal, and S. Lütz (2020) A gram-scale limonene production process with engineered Escherichia coli. Molecules. 25: 1881.

    Article  CAS  Google Scholar 

  48. Dudley, Q. M., A. S. Karim, C. J. Nash, and M. C. Jewett (2020) In vitro prototyping of limonene biosynthesis using cell-free protein synthesis. Metab. Eng. 61: 251–260.

    Article  CAS  Google Scholar 

  49. Gomes-Carneiro, M. R., M. E. Viana, I. Felzenszwalb, and F. J. Paumgartten (2005) Evaluation of beta-myrcene, alpha-terpinene and (+)- and (−)-alpha-pinene in the Salmonella/microsome assay. Food Chem. Toxicol. 43: 247–252.

    Article  CAS  Google Scholar 

  50. Kirby, J. and J. D. Keasling (2009) Biosynthesis of plant isoprenoids: perspectives for microbial engineering. Annu. Rev. Plant Biol. 60: 335–355.

    Article  CAS  Google Scholar 

  51. Yang, J., Q. Nie, M. Ren, H. Feng, X. Jiang, Y. Zheng, M. Liu, H. Zhang, and M. Xian (2013) Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels. 6: 60.

    Article  CAS  Google Scholar 

  52. Tashiro, M., H. Kiyota, S. Kawai-Noma, K. Saito, M. Ikeuchi, Y. Iijima, and D. Umeno (2016) Bacterial production of pinene by a laboratory-evolved pinene-synthase. ACS Synth. Biol. 5: 1011–1020.

    Article  CAS  Google Scholar 

  53. Niu, F. X., Y. B. Huang, Y. P. Shen, L. N. Ji, and J. Z. Liu (2020) Enhanced production of pinene by using a cell-free system with modular cocatalysis. J. Agric. Food Chem. 68: 2139–2145.

    Article  CAS  Google Scholar 

  54. Niu, F. X., X. He, Y. Q. Wu, and J. Z. Liu (2018) Enhancing production of pinene in Escherichia coli by using a combination of tolerance, evolution, and modular co-culture engineering. Front. Microbiol. 9: 1623.

    Article  Google Scholar 

  55. Yang, T., G. Stoopen, N. Yalpani, J. Vervoort, R. de Vos, A. Voster, F. W. Verstappen, H. J. Bouwmeester, and M. A. Jongsma (2011) Metabolic engineering of geranic acid in maize to achieve fungal resistance is compromised by novel glycosylation patterns. Metab. Eng. 13: 414–425.

    Article  CAS  Google Scholar 

  56. Wang, C., S. H. Yoon, H. J. Jang, Y. R. Chung, J. Y. Kim, E. S. Choi, and S. W. Kim (2011) Metabolic engineering of Escherichia coli for α-farnesene production. Metab. Eng. 13: 648–655.

    Article  CAS  Google Scholar 

  57. Tsuruta, H., C. J. Paddon, D. Eng, J. R. Lenihan, T. Horning, L. C. Anthony, R. Regentin, J. D. Keasling, N. S. Renninger, and J. D. Newman (2009) High-level production of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli. PLoS One. 4: e4489.

    Article  Google Scholar 

  58. Ro, D. K., E. M. Paradise, M. Ouellet, K. J. Fisher, K. L. Newman, J. M. Ndungu, K. A. Ho, R. A. Eachus, T. S. Ham, J. Kirby, M. C. Chang, S. T. Withers, Y. Shiba, R. Sarpong, and J. D. Keasling (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature. 440: 940–943.

    Article  CAS  Google Scholar 

  59. Chen, X., C. Zhang, R. Zou, G. Stephanopoulos, and H. P. Too (2017) In vitro metabolic engineering of amorpha-4,11-diene biosynthesis at enhanced rate and specific yield of production. ACS Synth. Biol. 6: 1691–1700.

    Article  CAS  Google Scholar 

  60. Ajikumar, P. K., W. H. Xiao, K. E. Tyo, Y. Wang, F. Simeon, E. Leonard, O. Mucha, T. H. Phon, B. Pfeifer, and G. Stephanopoulos (2010) Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science. 330: 70–74.

    Article  CAS  Google Scholar 

  61. Kay, J. E. and M. C. Jewett (2020) A cell-free system for production of 2,3-butanediol is robust to growth-toxic compounds. Metab. Eng. Commun. 10: e00114.

    Article  Google Scholar 

  62. Bujara, M., M. Schümperli, S. Billerbeck, M. Heinemann, and S. Panke (2010) Exploiting cell-free systems: implementation and debugging of a system of biotransformations. Biotechnol. Bioeng. 106: 376–389.

    CAS  Google Scholar 

  63. Kay, J. E. and M. C. Jewett (2015) Lysate of engineered Escherichia coli supports high-level conversion of glucose to 2,3-butanediol. Metab. Eng. 32: 133–142.

    Article  CAS  Google Scholar 

  64. Zhang, Y. H. (2011) Substrate channeling and enzyme complexes for biotechnological applications. Biotechnol. Adv. 29: 715–725.

    Article  CAS  Google Scholar 

  65. Ge, J., J. Lei, and R. N. Zare (2012) Protein-inorganic hybrid nanoflowers. Nat. Nanotechnol. 7: 428–432.

    Article  CAS  Google Scholar 

  66. Myung, S. and Y. H. Zhang (2013) Non-complexed four cascade enzyme mixture: simple purification and synergetic co-stabilization. PLoS One. 8: e61500.

    Article  CAS  Google Scholar 

  67. Echave, J. (2019) Beyond stability constraints: a biophysical model of enzyme evolution with selection on stability and activity. Mol. Biol. Evol. 36: 613–620.

    Article  CAS  Google Scholar 

  68. Kim, J. E. and Y. H. Zhang (2016) Biosynthesis of D-xylulose 5-phosphate from D-xylose and polyphosphate through a minimized two-enzyme cascade. Biotechnol. Bioeng. 113: 275–282.

    Article  CAS  Google Scholar 

  69. Liu, Y., J. Wang, C. Xu, Y. Chen, J. Yang, D. Liu, H. Niu, Y. Jiang, S. Yang, and H. Ying (2017) Efficient multi-enzyme-catalyzed CDP-choline production driven by an ATP donor module. Appl. Microbiol. Biotechnol. 101: 1409–1417.

    Article  CAS  Google Scholar 

  70. Kim, E. M., H. M. Woo, T. Tian, S. Yilmaz, P. Javidpour, J. D. Keasling, and T. S. Lee (2017) Autonomous control of metabolic state by a quorum sensing (QS)-mediated regulator for bisabolene production in engineered E. coli. Metab. Eng. 44: 325–336.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Research Project Supported by Shanxi Scholarship Council of China (No. 2020-132), the Jinzhong Key Research and Development Program for Science and Technology (No. Y191021), the Science and Technology Innovation Project of Universities in Shanxi province (No. 2019L0721), and the Basic Research Project of Shanxi University of Traditional Chinese Medicine (No. 2020PY-JC(Y)-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Guilan or Guo JianQuan.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liyang, Y., Qiang, G., Jifang, L. et al. Opportunities and Challenges of in vitro Synthetic Biosystem for Terpenoids Production. Biotechnol Bioproc E 27, 697–705 (2022). https://doi.org/10.1007/s12257-022-0100-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0100-2

Keywords

Navigation