Skip to main content
Log in

Calculation of All Possible Stoichiometric Coefficients and Theoretical Yields of Microbial Global Reactions

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2022

This article has been updated

Abstract

Stoichiometric analysis is a crucial step in biochemical processes because it allows us to find the proportions in which the substrates and products react. A system of algebraic equation is obtained from an elemental balance of the participating substances and determined, overdetermined or underdetermined systems can result depending on the number of substances and elements. Underdetermined systems are the most common ones as there are, generally, more substances than elemental balances. However, such systems have been poorly studied and a straightforward way to establish the solution space has not yet been reported. In this work a novel approach for finding all the possible solutions to such underdetermined systems is reported for the first time. The solutions space is expressed as a set of vectors which are here referred as extreme stoichiometries. To illustrate the general applicability and some uses of the proposed approach, three different fermentation systems are analyzed: growth of Chlamydomonas reinhardtii, a mixed culture for hydrogen production, and the growth of Saccharomyces cerevisiae. It is shown how the full stoichiometric spaces can be calculated for heterotrophy, autotrophy, mixotrophy, growth of mixed cultures in mixed substrates and how the experimental results should be contained in such spaces, what permits a consistency analysis. With the proposed method, it is now possible to estimate the maximum yields for any given microbial growth reaction and to assess the congruence of experimental data, even when the system is underdetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Hoover, S. R. and F. E. Allison (1940) The growth metabolism of Rhizobium, with evidence on the interrelations between respiration and synthesis. J. Biol. Chem. 134: 181–192.

    Article  CAS  Google Scholar 

  2. Monod, J. (1949) The growth of bacterial cultures. Annu. Rev. Microbiol. 3: 371–394.

    Article  CAS  Google Scholar 

  3. Roels, J. A. (1980) Application of macroscopic principles to microbial metabolism. Biotechnol. Bioeng. 22: 2457–2514.

    Article  CAS  Google Scholar 

  4. Heijnen, J. J. (1981) Application of the macroscopic electric charge balance in fermentation modeling. Biotechnol. Bioeng. 23: 1133–1144.

    Article  CAS  Google Scholar 

  5. Wang, N. S. and G. Stephanopoulos (1983) Application of macroscopic balances to the identification of gross measurement errors. Biotechnol. Bioeng. 25: 2177–2208.

    Article  CAS  Google Scholar 

  6. Xie, L. and D. I. C. Wang (1994) Stoichiometric analysis of animal cell growth and its application in medium design. Biotechnol. Bioeng. 43: 1164–1174.

    Article  CAS  Google Scholar 

  7. Ooijkaas, L. P., R. M. Buitelaar, J. Tramper, and A. Rinzema (2000) Growth and sporulation stoichiometry and kinetics of Coniothyrium minitans on agar media. Biotechnol. Bioeng. 69: 292–300.

    Article  CAS  Google Scholar 

  8. Thorne, L. R. (2010) An innovative approach to balancing chemical-reaction equations: a simplified matrix-inversion technique for determining the matrix null space. Chem. Educ. 15: 304–308.

    CAS  Google Scholar 

  9. Chuang, J.-C. (2011) Convex geometry and stoichiometry. arXiv:1106.3773. 1–34.

  10. Akinola, R. O., S. Y. Kutchin, I. A. Nyam, and O. Adeyanju (2016) Using row reduced echelon form in balancing chemical equations. Adv. Linear Algebra Matrix Theory. 6: 146–157.

    Article  Google Scholar 

  11. Chowdhury, A. and C. D. Maranas (2015) Designing overall stoichiometric conversions and intervening metabolic reactions. Sci. Rep. 5: 16009.

    Article  CAS  Google Scholar 

  12. Schuster, S. and C. Hilgetag (1994) On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2: 165–182.

    Article  Google Scholar 

  13. Beckers, V., I. Poblete-Castro, J. Tomasch, and C. Wittmann (2016) Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Microb. Cell Fact. 15: 73.

    Article  Google Scholar 

  14. Dash, S., D. G. Olson, S. H. Joshua Chan, D. Amador-Noguez, L. R. Lynd, and C. D. Maranas (2019) Thermodynamic analysis of the pathway for ethanol production from cellobiose in Clostridium thermocellum. Metab. Eng. 55: 161–169.

    Article  CAS  Google Scholar 

  15. Mendonça, T. T., J. G. C. Gomez, E. Buffoni, R. J. Sánchez Rodriguez, J. Schripsema, M. S. G. Lopes, and L. F. Silva (2014) Exploring the potential of Burkholderia sacchari to produce polyhydroxyalkanoates. J. Appl. Microbiol. 116: 815–829.

    Article  Google Scholar 

  16. Noorman, H. J., J. J. Heijnen, and K. C. A. M. Luyben (1991) Linear relations in microbial reaction systems: a general overview of their origin, form, and use. Biotechnol. Bioeng. 38: 603–618.

    Article  CAS  Google Scholar 

  17. Clarke, B. L. (1981) Complete set of steady states for the general stoichiometric dynamical system. J. Chem. Phys. 75: 4970.

    Article  CAS  Google Scholar 

  18. Schuster, S., C. Hilgetag, J. H. Woods, and D. A. Fell (2002) Reaction routes in biochemical reaction systems: algebraic properties, validated calculation procedure and example from nucleotide metabolism. J. Math. Biol. 45: 153–181.

    Article  CAS  Google Scholar 

  19. Wagner, C. (2004) Nullspace approach to determine the elementary modes of chemical reaction systems. J. Phys. Chem. B. 108: 2425–2431.

    Article  CAS  Google Scholar 

  20. Zamorano, F., A. V. Wouwer, and G. Bastin (2010) A detailed metabolic flux analysis of an underdetermined network of CHO cells. J. Biotechnol. 150: 497–508.

    Article  CAS  Google Scholar 

  21. Urbanczik, R. and C. Wagner (2005) An improved algorithm for stoichiometric network analysis: theory and applications. Bioinformatics. 21: 1203–1210.

    Article  CAS  Google Scholar 

  22. von Kamp, A., S. Thiele, O. Hädicke, and S. Klamt (2017) Use of CellNetAnalyzer in biotechnology and metabolic engineering. J. Biotechnol. 261: 221–228.

    Article  CAS  Google Scholar 

  23. Mavrovouniotis, M. L. (1991) Estimation of standard Gibbs energy changes of biotransformations. J. Biol. Chem. 266: 14440–14445.

    Article  CAS  Google Scholar 

  24. Alberty, R. A. (1998) Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants. Arch. Biochem. Biophys. 353: 116–130.

    Article  CAS  Google Scholar 

  25. Popovic, M. (2019) Thermodynamic properties of microorganisms: determination and analysis of enthalpy, entropy, and Gibbs free energy of biomass, cells and colonies of 32 microorganism species. Heliyon. 5: e01950.

    Article  Google Scholar 

  26. Vuppaladadiyam, A. K., P. Prinsen, A. Raheem, R. Luque, and M. Zhao (2018) Microalgae cultivation and metabolites production: a comprehensive review. Biofuel. Bioprod. Biorefin. 12: 304–324.

    Article  CAS  Google Scholar 

  27. Boyle, N. R. and J. A. Morgan (2009) Flux balance analysis of primary metabolism in Chlamydomonas reinhardtii. BMC Syst. Biol. 3: 4.

    Article  Google Scholar 

  28. Schwartz, E. and B. Friedrich (2006) The H2-metabolizing prokaryotes. pp. 496–563. In: [M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (eds.). The Prokaryotes. Springer, New York, NY, USA.

    Google Scholar 

  29. Kleerebezem, R. and M. C. van Loosdrecht (2007) Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18: 207–212.

    Article  CAS  Google Scholar 

  30. García-Depraect, O., R. Castro-Muñoz, R. Muñoz, E. R. Rene, E. León-Becerril, I. Valdez-Vazquez, G. Kumar, L. C. Reyes-Alvarado, L. J. Martínez-Mendoza, J. Carrillo-Reyes, and G. Buitrón (2021) A review on the factors influencing biohydrogen production from lactate: the key to unlocking enhanced dark fermentative processes. Bioresour. Technol. 324: 124595.

    Article  Google Scholar 

  31. Esquivel-Elizondo, S., I. Chairez, E. Salgado, J. S. Aranda, G. Baquerizo, and E. I. Garcia-Peña (2014) Controlled continuous bio-hydrogen production using different biogas release strategies. Appl. Biochem. Biotechnol. 173: 1737–1751.

    Article  CAS  Google Scholar 

  32. Gomez-Romero, J., I. Garcia-Peña, J. Ramirez-Muñoz, and L. G. Torres (2014) Rheological characterization of a mixed fruit/vegetable puree feedstock for hydrogen production by dark fermentation. Adv. Chem. Eng. Sci. 4: 81–88.

    Article  Google Scholar 

  33. Niño-Navarro, C., I. Chairez, P. Christen, M. Canul-Chan, and E. I. García-Peña (2020) Enhanced hydrogen production by a sequential dark and photo fermentation process: effects of initial feedstock composition, dilution and microbial population. Renew. Energy. 147: 924–936.

    Article  Google Scholar 

  34. Matsumoto, M. and Y. Nishimura (2007) Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 103: 236–241.

    Article  CAS  Google Scholar 

  35. Detman, A., D. Mielecki, A. Chojnacka, A. Salamon, M. K. Błaszczyk, and A. Sikora (2019) Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Microb. Cell Fact. 18: 36.

    Article  Google Scholar 

  36. Kargi, F., N. S. Eren, and S. Ozmihci (2012) Bio-hydrogen production from cheese whey powder (CWP) solution: comparison of thermophilic and mesophilic dark fermentations. Int. J. Hydrogen Energy. 37: 8338–8342.

    Article  CAS  Google Scholar 

  37. Gonzalez-Garcia, R. A., R. Aispuro-Castro, E. Salgado-Manjarrez, J. Aranda-Barradas, and E. I. Garcia-Peña (2017) Metabolic pathway and flux analysis of H2 production by an anaerobic mixed culture. Int. J. Hydrogen Energy. 42: 4069–4082.

    Article  CAS  Google Scholar 

  38. Dashko, S., N. Zhou, C. Compagno, and J. Piškur (2014) Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 14: 826–832.

    Article  CAS  Google Scholar 

  39. Kutyna, D. R., C. Varela, P. A. Henschke, P. J. Chambers, and G. A. Stanley (2010) Microbiological approaches to lowering ethanol concentration in wine. Trends Food Sci. Technol. 21: 293–302.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge to the National Council of Science and Technology of Mexico (CONACYT) for the partial financial support (Grant No. 682137) and the full PhD scholarship (CVU 867318).

Author information

Authors and Affiliations

Authors

Contributions

HGRE: conceptualization, programming and calculation performance, applications of the method and algorithm, analysis of results, manuscript writing. ABJS: analysis of theoretical aspects, contributions on data consistency and metabolic aspects of S. cerevisiae, manuscript reviewing and correction. BCA: analysis of results, metabolic aspects of C. reinhardtii, proof correcting. GPEI: analysis of results, metabolic aspects on biohydrogen production, proof correcting SME: conceptualization, algorithmic adaptation and programming, analysis of results, manuscript writing.

Corresponding author

Correspondence to Edgar Salgado-Manjarrez.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Guisao, R.E., Aranda-Barradas, J.S., Badillo-Corona, A. et al. Calculation of All Possible Stoichiometric Coefficients and Theoretical Yields of Microbial Global Reactions. Biotechnol Bioproc E 27, 797–809 (2022). https://doi.org/10.1007/s12257-022-0061-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0061-5

Keywords

Navigation