Skip to main content
Log in

Xylose Fermentation Was Improved by Kluyveromyces marxianus KHM89 through Up-regulation of Nicotinamide Adenine Dinucleotide (NAD+) Salvage Pathway

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Xylose fermentation has been reported to be improved in Kluyveromyces marxianus via strain improvement by overexpressing xylose reductase (XYL1) and xylitol dehydrogenase (XYL2). This study performed directed evolution to further enhance xylose consumption in a K. marxianus mutant following transcriptomic analysis to determine genes associated with enhanced characteristics. KmXYL1 and KmXYL2 genes were overexpressed in K. marxianus 17555ΔURA3 for improving xylose fermentation. By performing directed evolution, a mutant K. marxianus KHM89 showing enhanced ethanol production was isolated from xylose medium. K. marxianus KHM89 consumed 47.39 g/L of xylose and produced 22.62 g/L of xylitol and 10.59 g/L of ethanol while the parental strain consumed 25.15 g/L of xylose and produced 7.36 g/L of xylitol and 2.05 g/L of ethanol. RNA sequencing-based transcriptomic analysis showed that alcohol dehydrogenases, aldehyde dehydrogenases, and NAD+ salvage pathway enzymes were upregulated in K. marxianus KHM89. These results were achieved via a combinatorial approach of rational design and directed evolution. The findings of this study contribute to the improvement of xylose fermentation by K. marxianus at an industrial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, R. A. and J.-M. Lavoie (2013) From first- to third-generation biofuels: challenges of producing a commodity from a biomass of increasing complexity. Anim. Front. 3: 6–11.

    Article  Google Scholar 

  2. Hamelinck, C. N., G. van Hooijdonk, and A. P. Faaij (2005) Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenergy. 28: 384–410.

    Article  CAS  Google Scholar 

  3. Sun, Y. and J. Cheng (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1–11.

    Article  CAS  Google Scholar 

  4. Balat, M. (2009) Bioethanol as a vehicular fuel: a critical review. Energy Sources Part A. 31: 1242–1255.

    Article  CAS  Google Scholar 

  5. Saini, J. K., R. Saini, and L. Tewari (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5: 337–353.

    Article  Google Scholar 

  6. Banerjee, S., G. Mishra, and A. Roy (2019) Metabolic engineering of bacteria for renewable bioethanol production from cellulosic biomass. Biotechnol. Bioprocess Eng. 24: 713–733.

    Article  CAS  Google Scholar 

  7. Lee, J. (1997) Biological conversion of lignocellulosic biomass to ethanol. J. Biotechnol. 56: 1–24.

    Article  CAS  Google Scholar 

  8. Sivakumar, G., D. R. Vail, J. Xu, D. M. Burner, J. O. Lay, X. Ge, and P. J. Weathers (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng. Life Sci. 10: 8–18.

    Article  CAS  Google Scholar 

  9. Demirbaş, A. (2004) Ethanol from cellulosic biomass resources. Int. J. Green Energy. 1: 79–87.

    Article  Google Scholar 

  10. Wang, Y., X. Yu, and H. Zhao (2020) Biosystems design by directed evolution. AIChE J. 66: e16716.

    CAS  Google Scholar 

  11. Eriksen, D. T., P. C. H. Hsieh, P. Lynn, and H. Zhao (2013) Directed evolution of a cellobiose utilization pathway in Saccharomyces cerevisiae by simultaneously engineering multiple proteins. Microb. Cell Fact. 12: 61.

    Article  CAS  PubMed Central  Google Scholar 

  12. Crook, N., J. Abatemarco, J. Sun, J. M. Wagner, A. Schmitz, and H. S. Alper (2016) In vivo continuous evolution of genes and pathways in yeast. Nat Commun. 7: 13051.

    Article  CAS  PubMed Central  Google Scholar 

  13. Mans, R., J.-M. G. Daran, and J. T. Pronk (2018) Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production. Curr. Opin. Biotechnol. 50: 47–56.

    Article  CAS  Google Scholar 

  14. Kim, S.-B., D.-H. Kwon, J.-B. Park, and S.-J. Ha (2019) Alleviation of catabolite repression in Kluyveromyces marxianus: the thermotolerant SBK1 mutant simultaneously coferments glucose and xylose. Biotechnol. Biofuels. 12: 90.

    Article  PubMed Central  Google Scholar 

  15. Lee, S.-M., T. Jellison, and H. S. Alper (2012) Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol. 78: 5708–5716.

    Article  CAS  PubMed Central  Google Scholar 

  16. Parreiras, L. S., R. J. Breuer, R. Avanasi Narasimhan, A. J. Higbee, A. La Reau, M. Tremaine, L. Qin, L. B. Willis, B. D. Bice, B. L. Bonfert, R. C. Pinhancos, A. J. Balloon, N. Uppugundla, T. Liu, C. Li, D. Tanjore, I. M. Ong, H. Li, E. L. Pohlmann, J. Serate, S. T. Withers, B. A. Simmons, D. B. Hodge, M. S. Westphall, J. J. Coon, B. E. Dale, V. Balan, D. H. Keating, Y. Zhang, R. Landick, A. P. Gasch, and T. K. Sato (2014) Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover. PLoS One. 9: e107499.

    Article  PubMed Central  Google Scholar 

  17. Kwon, D.-H., J.-B. Park, E. Hong, and S.-J. Ha (2019) Ethanol production from xylose is highly increased by the Kluyveromyces marxianus mutant 17694-DH1. Bioprocess Biosyst. Eng. 42: 63–70.

    Article  CAS  Google Scholar 

  18. Nagasaki, H., Y. Suzuki, T. Fujimoto, H. Saito, T. Suzuki, and S. Watanabe (2021) Effect of air sparging on ethanol production from xylose and glucose in continuous chemostat fermentation process utilizing high cell density of Candida intermedia 4-6-4T2. J. Jpn. Pet. Inst. 64: 178–187.

    Article  CAS  Google Scholar 

  19. Schmidt, M. T., B. C. Smith, M. D. Jackson, and J. M. Denu (2004) Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation. J. Biol. Chem. 279: 40122–40129.

    Article  CAS  Google Scholar 

  20. Sporty, J., S. J. Lin, M. Kato, T. Ognibene, B. Stewart, K. Turteltaub, and G. Bench (2009) Quantitation of NAD+ biosynthesis from the salvage pathway in Saccharomyces cerevisiae. Yeast. 26: 363–369.

    Article  CAS  Google Scholar 

  21. Li, Y.-F. and W.-G. Bao (2007) Why do some yeast species require niacin for growth? Different modes of NAD synthesis. FEMS Yeast Res. 7: 657–664.

    Article  CAS  Google Scholar 

  22. Kim, J.-S., J.-B. Park, S.-W. Jang, and S.-J. Ha (2015) Enhanced xylitol production by mutant Kluyveromyces marxianus 36907-FMEL1 due to improved xylose reductase activity. Appl. Biochem. Biotechnol. 176: 1975–1984.

    Article  CAS  Google Scholar 

  23. Anderson, P. J., K. McNeil, and K. Watson (1986) High-efficiency carbohydrate fermentation to ethanol at temperatures above 40 degrees C by Kluyveromyces marxianus var. marxianus isolated from sugar mills. Appl. Environ. Microbiol. 51: 1314–1320.

    Article  CAS  PubMed Central  Google Scholar 

  24. Hughes, D. B., N. J. Tudroszen, and C. J. Moye (1984) The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of Kluveromyces marxianus. Biotechnol. Lett. 6: 1–6.

    Article  CAS  Google Scholar 

  25. Park, J.-B., J.-S. Kim, S.-W. Jang, E. Hong, and S.-J. Ha (2015) The application of thermotolerant yeast Kluyveromyces marxianus as a potential industrial workhorse for biofuel production. KSBB J. 30: 125–131.

    Article  Google Scholar 

  26. Park, J.-B., J.-S. Kim, S.-W. Jang, D.-H. Kweon, E. K. Hong, W. C. Shin, and S.-J. Ha (2016) Sequence analysis of KmXYL1 genes and verification of thermotolerant enzymatic activities of xylose reductase from four Kluyveromyces marxianus strains. Biotechnol. Bioprocess Eng. 21: 581–586.

    Article  CAS  Google Scholar 

  27. Park, J.-B., J.-S. Kim, D.-H. Kweon, D.-H. Kweon, J.-H. Seo, and S.-J. Ha (2019) Overexpression of endogenous xylose reductase enhanced xylitol productivity at 40 °C by thermotolerant yeast Kluyveromyces marxianus. Appl. Biochem. Biotechnol. 189: 459–470.

    Article  CAS  Google Scholar 

  28. Jiang, M., X. Chen, L. Liang, R. Liu, Q. Wan, M. Wu, H. Zhang, J. Ma, K. Chen, and P. Ouyang (2014) Co-expression of phosphoenolpyruvate carboxykinase and nicotinic acid phosphoribosyltransferase for succinate production in engineered Escherichia coli. Enzyme Microb. Technol. 56: 8–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1F1A1055315).

Author information

Authors and Affiliations

Authors

Contributions

Deok-Ho Kwon contributed to the study conception, design, material preparation and data collection. Suk-Jin Ha contributed to review and editing of the manuscript.

Corresponding author

Correspondence to Suk-Jin Ha.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, DH., Ha, SJ. Xylose Fermentation Was Improved by Kluyveromyces marxianus KHM89 through Up-regulation of Nicotinamide Adenine Dinucleotide (NAD+) Salvage Pathway. Biotechnol Bioproc E 27, 624–630 (2022). https://doi.org/10.1007/s12257-022-0036-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-022-0036-6

Keywords

Navigation