Abstract
To develop a variety of algaecides for harmful algae control that cause water pollution, we synthesized a series of 79 derivatives based on the structure of N1-benzyl-N3, N3-diethylpropane-1,3-diamine and analyzed their structure-activity relationships toward a harmful and a harmless algal species. Among the derivatives, the best algicidal activities with LC50 values of 0.49 (compound 24) and 0.42 µM (compound 34) in Cyanobacteria, respectively were achieved when CH3 and F groups were substituted at the R2 position, with CH3CH3 group at the R3 position, and amine chain length 3 at the R4 position after fixing Cl substituent group at the R1 position of the benzaldehyde group. The compounds 24 and 34 decreased the chlorophyll content of treated groups by approximately 75–80% as compared to the control. Algicidal activities for harmful algal species were as follows, in the order of greatest to the least: Microcystis sp. > Microcystis aeruginosa > Hererocapsa circularisquama > Chattonella marina > Heterosigma akashiwo. The acute toxicities of compounds 24 and 34 against Daphnia magna showed EC50 values of 20.18 and 22.32 µM, respectively, which were approximately 46.4 and 44.69 times higher than the LC50 value against Microcystis sp., showing low ecotoxicity. In the case of Danio rerio, they showed very low ecotoxicity with EC50 values of 94.97 and 45.97 µM, respectively. These results indicate that compounds 24 and 34 could be potential agents for selectively controlling harmful algal blooms.
This is a preview of subscription content, access via your institution.
References
O’Brien, W. J. (1974) The dynamics of nutrient limitation of phytoplankton algae: a model reconsidered. Ecology. 55: 135–141.
Davis, T. W., D. L. Berry, G. L. Boyer, and C. J. Gobler (2009) The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during Cyanobacteria blooms. Harmful Algae. 8: 715–725.
Ferreira, J. G., J. H. Andersen, A. Borja, S. B. Bricker, J. Camp, M. C. da Silva, E. Garcés, A.-S. Heiskanen, C. Humborg, L. Ignatiades, C. Lancelot, A. Menesguen, P. Tett, N. Hoepffner, and U. Claussen (2011) Overview of eutrophication indicators to assess environmental status within the European marine strategy framework directive. Estuar. Coast. Shelf Sci. 93: 117–131.
Kim, Z. H., K. Kim, H. Park, C. S. Lee, S. W. Nam, K. J. Yim, J. Y. Jung, S. J. Hong, and C. G. Lee (2021) Enhanced fatty acid productivity by Parachlorella sp., a freshwater microalga, via adaptive laboratory evolution under salt stress. Biotechnol. Bioprocess Eng. 26: 223–231.
Yuvraj and P. Padmanabhan (2021) Improvements in conventional modeling practices for effective simulation and understanding of microalgal growth in photobioreactors: an experimental study. Biotechnol. Bioprocess Eng. 26: 483–500.
Jeon, B., J. Han, S. K. Kim, J.-H. Ahn, H. C. Oh, and H. D. Park (2015) An overview of problems cyanotoxins produced by cyanobacteria and the solutions thereby. J. Korean Soc. Environ. Eng. 37: 657–667.
Ding, W. X., H. M. Shen, Y. Shen, H. G. Zhu, and C. N. Ong (1998) Microcystic cyanobacteria causes mitochondrial membrane potential alteration and reactive oxygen species formation in primary cultured rat hepatocytes. Environ. Health Perspect. 106: 409–413.
Hooser, S. B., V. R. Beasley, R. A. Lovell, W. W. Carmichael, and W. M. Haschek (1989) Toxicity of microcystin LR, a cyclic heptapeptide hepatotoxin from Microcystis aeruginosa, to rats and mice. Vet. Pathol. 26: 246–252. (Erratum published 1989, Vet. Pathol. 26: 553).
Verspagen, J. M. H., P. M. Visser, and J. Huisman (2006) Aggregation with clay causes sedimentation of the buoyant cyanobacteria Microcystis spp. Aquat. Microb. Ecol. 44: 165–174.
Chislock, M. F., O. Sarnelle, L. M. Jernigan, and A. E. Wilson (2013) Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Water Res. 47: 1961–1970.
Pitois, S., M. H. Jackson, and B. J. B. Wood (2000) Problems associated with the presence of cyanobacteria in recreational and drinking waters. Int. J. Environ. Health Res. 10: 203–218.
Kim, Y. M., Y. Wu, T. U. Duong, G. S. Ghodake, S. W. Kim, E. S. Jin, and H. Cho (2010) Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl. Biochem. Biotechnol. 162: 2273–2283.
Han, H. K., Y. M. Kim, S. J. Lim, S. S. Hong, S. G. Jung, H. Cho, W. Lee, and E. Jin (2011) Enhanced efficacy of TD53, a novel algicidal agent, against the harmful algae via the liposomal delivery system. Int. J. Pharm. 405: 137–141.
Yim, E. C., I. T. Park, H. K. Han, S. W. Kim, H. Cho, and S. J. Kim (2010) Acute toxicity assessment of new algicides of thiazolidinediones derivatives, TD53 and TD49, using Ulva pertusa Kjellman. Environ. Health Toxicol. 25: 273–278.
Kim, Y. M., Y. Wu, T. U. Duong, S. G. Jung, S. W. Kim, H. Cho, and E. S. Jin (2012) Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. 14: 312–322.
Kwon, H. L., J. H. Kim, D. H. Na, D. H. Byeun, Y. Wu, S. W. Kim, E. S. Jin, and H. Cho (2013) Combination of 1,4-naphthoquinone with benzothiazoles had selective algicidal effects against harmful algae. Biotechnol. Bioprocess Eng. 18: 932–941.
Moghazy, R. M. (2019) Activated biomass of the green microalga Chlamydomonas variabilis as an efficient biosorbent to remove methylene blue dye from aqueous solutions. Water S. A. 45: 20–28.
Rahman, M. M., M. A. Rahman, T. Maki, T. Nishiuchi, T. Asano, and H. Hasegawa (2015) A marine phytoplankton Prymnesium parvum upregulates the component proteins of photosystem II under iron stress. Photosynthetica. 53: 136–143.
Samel, A., M. Ziegenfuss, C. E. Goulden, S. Banks, and K. N. Baer (1999) Culturing and bioassay testing of Daphnia magna using Elendt M4, Elendt M7, and COMBO media. Ecotoxicol. Environ. Saf. 43: 103–110.
Russo, G., F. Lehne, S. M. Pose Méndez, S. Dübel, R. W. Köster, and W. A. Sassen (2018) Culture and transfection of Zebrafish primary cells. J. Vis. Exp. (138): 57872.
Zhou, S., H. Yin, S. Tang, H. Peng, D. Yin, Y. Yang, Z. Liu, and Z. Dang (2016) Physiological responses of Microcystis aeruginosa against the algicidal bacterium Pseudomonas aeruginosa. Ecotoxicol. Environ. Saf. 127: 214–221.
Dom, N., D. Knapen, D. Benoot, I. Nobels, and R. Blust (2010) Aquatic multi-species acute toxicity of (chlorinated) anilines: experimental versus predicted data. Chemosphere. 81: 177–186.
OECD/OCDE (2004) Guideline for testing of chemicals. ‘Daphnia sp., acute immobilisation test’. OECD/OCDE, Paris, France.
Choi, W. Y., D. H. Kang, and H. Y. Lee (2018) Enhancement of neuroprotective effects of Spirulina maxima by a low-temperature extraction process with ultrasonic pretreatment. Biotechnol. Bioprocess Eng. 23: 415–423.
Tang, Y., J. Tian, S. Li, C. Xue, Z. Xue, D. Yin, and S. Yu (2015) Combined effects of graphene oxide and Cd on the photosynthetic capacity and survival of Microcystis aeruginosa. Sci. Total Environ. 532: 154–161.
Wu, Y., Y. Lee, S. G. Jung, M. Kim, C. Y. Eom, S. W. Kim, H. Cho, and E. S. Jin (2014) A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control. World J. Microbiol. Biotechnol. 30: 1603–1614.
You, D. S., Y. W. Lee, D. Choi, Y. C. Chang, and H. Cho (2017) Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa. Korean J. Chem. Eng. 34: 139–149.
Choi, D., S. Yu, S. H. Baek, Y. H. Kang, Y. C. Chang, and H. Cho (2016) Synthesis and algicidal activity of new dichlorobenzylamine derivatives against harmful red tides. Biotechnol. Bioprocess Eng. 21: 463–476.
Jo, D. R., Y. O. Kim, R. Kim, Y. C. Chang, D. B. Choi, and H. Cho (2017) Novel rhodanine derivatives are selective algicides against Microcystis aeruginosa. Biotechnol. Bioprocess Eng. 22: 748–757.
Park, J. E., K. A. Park, Y. J. Park, and H. J. Han (2019) Overview of chlorophyll-a concentration retrieval algorithms from multi-satellite data. J. Korean Earth Sci. Soc. 40: 315–328.
Acknowledgements
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1B04930255).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The authors declare no conflict of interest.
Neither ethical approval nor informed consent was required for this study.
Additional information
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Park, K.S., Choi, D., Son, H.K. et al. An Algicidal Agent against Harmful Algae Using Novel N1-benzyl-N3, N3-diethylpropane-1,3-diamine Derivatives. Biotechnol Bioproc E 28, 215–225 (2023). https://doi.org/10.1007/s12257-021-0415-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12257-021-0415-4
Keywords
- algicidal agent
- harmful algal blooms
- Microcystis sp.
- benzylamine derivatives
- acute ecotoxicology