Skip to main content

SARS-CoV-2 Variants: Mutations and Effective Changes

Abstract

One of the primary threats to the goal of controlling and eventually defeating SARS-CoV-2 is that of mutation. Recognizing this, a great amount of effort and dedicated study is being given to the matter. Due to the novel coronavirus’s general prevalence and rate of mutation, this is an extremely dynamic area with constant new developments. Therefore, understanding the virus’s pathogenesis and how mutations affect it is crucial. This review attempts to aid in understanding the currently most important strains and what primary changes they entail in connection to more specific mutations, and how they each affect infectivity, antigen resistance, and other properties. In an attempt to maintain relevance to the time at which this paper will be published, priority has been given to variants classified by the WHO and the CDC as of Sep. 23, 2021, as “Variants of Concern”. Of particular interest in B.1.1.7, B.1.351, B.1.617.2, P.1 are the mutations affecting the Spike protein and Receptor Binding Domain, as they directly affect infectivity and susceptibility to neutralization. Certain mutations (D614G, E484K, N501Y, K417N, L452R and P681R) have appeared across several different strains, often accompanied by others that may be complementary working together to confer increased infectivity, fitness, or resistance to neutralization. We anticipate that the understanding of such COVID-19 mutations will, in the near future, prove important for diagnosis, treatment development, and vaccine development.

References

  1. Cucinotta, D. and M. Vanelli (2020) WHO declares COVID-19 a pandemic. Acta Biomed. 91: 157–160.

    PubMed  PubMed Central  Google Scholar 

  2. CDC, Coronavirus Disease 2019 (COVID-19 delta-variant). https://www.cdc.gov.

  3. Outbreak.info, B.1.617.2 Lineage Report. https://outbreak.info/situation-reports?pango=B.1.617.2.

  4. Wang, P., M. S. Nair, L. Liu, S. Iketani, Y. Luo, Y. Guo, M. Wang, J. Yu, B. Zhang, P. D. Kwong, B. S. Graham, J. R. Mascola, J. Y. Chang, M. T. Yin, M. Sobieszczyk, C. A. Kyratsous, L. Shapiro, Z. Sheng, Y. Huang, and D. D. Ho (2021) Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 593: 130–135.

    CAS  PubMed  Google Scholar 

  5. Hodcroft, E. B., D. B. Domman, D. J. Snyder, K. Y. Oguntuyo, M. Van Diest, K. H. Densmore, K. C. Schwalm, J. Femling, J. L. Carroll, R. S. Scott, M. M. Whyte, M. W. Edwards, N. C. Hull, C. G. Kevil, J. A. Vanchiere, B. Lee, D. L. Dinwiddie, V. S. Cooper, and J. P. Kamil (2021) Emergence in late 2020 of multiple lineages of SARS-CoV-2 spike protein variants affecting amino acid position 677. medRxiv. 2021.02.12.21251658.

  6. Korber, B., W. M. Fischer, S. Gnanakaran, H. Yoon, J. Theiler, W. Abfalterer, N. Hengartner, E. E. Giorgi, T. Bhattacharya, B. Foley, K. M. Hastie, M. D. Parker, D. G. Partridge, C. M. Evans, T. M. Freeman, T. I. de Silva, A. Angyal, R. L. Brown, L. Carrilero, L. R. Green, D. C. Groves, K. J. Johnson, A. J. Keeley, B. B. Lindsey, P. J. Parsons, M. Raza, S. Rowland-Jones, N. Smith, R. M. Tucker, D. Wang, M. D. Wyles, C. McDanal, L. G. Perez, H. Tang, A. Moon-Walker, S. P. Whelan, C. C. LaBranche, E. O. Saphire, and D. C. Montefiori (2020) Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 182: 812–827.e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hou, Y. J., S. Chiba, P. Halfmann, C. Ehre, M. Kuroda, K. H. Dinnon 3rd, S. R. Leist, A. Schäfer, N. Nakajima, K. Takahashi, R. E. Lee, T. M. Mascenik, R. Graham, C. E. Edwards, L. V. Tse, K. Okuda, A. J. Markmann, L. Bartelt, A. de Silva, D. M. Margolis, R. C. Boucher, S. H. Randell, T. Suzuki, L. E. Gralinski, Y. Kawaoka, and R. S. Baric (2020) SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 370: 1464–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ozono, S., Y. Zhang, H. Ode, K. Sano, T. S. Tan, K. Imai, K. Miyoshi, S. Kishigami, T. Ueno, Y. Iwatani, T. Suzuki, and K. Tokunaga (2021) SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity. Nat. Commun. 12: 848.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Plante, J. A., Y. Liu, J. Liu, H. Xia, B. A. Johnson, K. G. Lokugamage, X. Zhang, A. E. Muruato, J. Zou, C. R. Fontes-Garfias, D. Mirchandani, D. Scharton, J. P. Bilello, Z. Ku, Z. An, B. Kalveram, A. N. Freiberg, V. D. Menachery, X. Xie, K. S. Plante, S. C. Weaver, and P. Y. Shi (2021) Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 592: 116–121.

    CAS  PubMed  Google Scholar 

  10. Mansbach, R. A., S. Chakraborty, K. Nguyen, D. C. Montefiori, B. Korber, and S. Gnanakaran (2021) The SARS-CoV-2 spike variant D614G favors an open conformational state. Sci. Adv. 7: eabf3671.

    PubMed  PubMed Central  Google Scholar 

  11. Weissman, D., M. G. Alameh, T. de Silva, P. Collini, H. Hornsby, R. Brown, C. C. LaBranche, R. J. Edwards, L. Sutherland, S. Santra, K. Mansouri, S. Gobeil, C. McDanal, N. Pardi, N. Hengartner, P. J. C. Lin, Y. Tam, P. A. Shaw, M. G. Lewis, C. Boesler, U. Şahin, P. Acharya, B. F. Haynes, B. Korber, and D. C. Montefiori (2021) D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell Host Microbe. 29: 23–31.e4.

    CAS  PubMed  Google Scholar 

  12. Long, S. W., R. J. Olsen, P. A. Christensen, D. W. Bernard, J. J. Davis, M. Shukla, M. Nguyen, M. O. Saavedra, P. Yerramilli, L. Pruitt, S. Subedi, H. C. Kuo, H. Hendrickson, G. Eskandari, H. A. T. Nguyen, J. H. Long, M. Kumaraswami, J. Goike, D. Boutz, J. Gollihar, J. S. McLellan, C. W. Chou, K. Javanmardi, I. J. Finkelstein, and J. M. Musser (2020) Molecular architecture of early dissemination and massive second wave of the SARS-CoV-2 virus in a major metropolitan area. mBio. 11: e02707–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Volz, E., V. Hill, J. T. McCrone, A. Price, D. Jorgensen, Á. O’Toole, J. Southgate, R. Johnson, B. Jackson, F. F. Nascimento, S. M. Rey, S. M. Nicholls, R. M. Colquhoun, A. da Silva Filipe, J. Shepherd, D. J. Pascall, R. Shah, N. Jesudason, K. Li, R. Jarrett, N. Pacchiarini, M. Bull, L. Geidelberg, I. Siveroni, I. Goodfellow, N. J. Loman, O. G. Pybus, D. L. Robertson, E. C. Thomson, A. Rambaut, and T. R. Connor (2021) Evaluating the Effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell. 184: 64–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ferrareze, P. A. G., V. B. Franceschi, A. de Menezes Mayer, G. D. Caldana, R. A. Zimerman, and C. E. Thompson (2021) E484K as an innovative phylogenetic event for viral evolution: Genomic analysis of the E484K spike mutation in SARS-CoV-2 lineages from Brazil. Infect. Genet. Evol. 93: 104941.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Laffeber, C., K. de Koning, R. Kanaar, and J. H. G. Lebbink (2021) Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J. Mol. Biol. 433: 167058.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Nelson, G., O. Buzko, P. Spilman, K. Niazi, S. Rabizadeh, and P. Soon-Shiong (2021) Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. bioRxiv. 2021.01.13.426558.

  17. Khan, A., T. Zia, M. Suleman, T. Khan, S. S. Ali, A. A. Abbasi, A. Mohammad, and D. Q. Wei (2021) Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. J. Cell Physiol. 236: 7045–7057.

    CAS  PubMed  Google Scholar 

  18. Alenquer, M., F. Ferreira, D. Lousa, M. Valério, M. Medina-Lopes, M. L. Bergman, J. Gonçalves, J. Demengeot, R. B. Leite, J. Lilue, Z. Ning, C. Penha-Gonçalves, H. Soares, C. M. Soares, and M. J. Amorim (2021) Signatures in SARS-CoV-2 spike protein conferring escape to neutralizing antibodies. PLoS Pathog. 17: e1009772.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Jangra, S., C. Ye, R. Rathnasinghe, D. Stadlbauer, F. Krammer, V. Simon, L. Martinez-Sobrido, A. Garcia-Sastre, and M. Schotsaert (2021) The E484K mutation in the SARS-CoV-2 spike protein reduces but does not abolish neutralizing activity of human convalescent and post-vaccination sera. medRxiv. 2021.01.26. 21250543.

  20. Greaney, A. J., A. N. Loes, K. H. D. Crawford, T. N. Starr, K. D. Malone, H. Y. Chu, and J. D. Bloom (2021) Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 29: 463–476.e6.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Baum, A., B. O. Fulton, E. Wloga, R. Copin, K. E. Pascal, V. Russo, S. Giordano, K. Lanza, N. Negron, M. Ni, Y. Wei, G. S. Atwal, A. J. Murphy, N. Stahl, G. D. Yancopoulos, and C. A. Kyratsous (2020) Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science. 369: 1014–1018.

    CAS  PubMed  Google Scholar 

  22. Widera, M., A. Wilhelm, S. Hoehl, C. Pallas, N. Kohmer, T. Wolf, H. F. Rabenau, V. M. Corman, C. Drosten, M. J. G. T. Vehreschild, U. Goetsch, R. Gottschalk, and S. Ciesek (2021) Limited neutralization of authentic severe acute respiratory syndrome coronavirus 2 variants carrying E484K in vitro. J. Infect. Dis. 224: 1109–1114.

    CAS  PubMed  Google Scholar 

  23. Mostafa, H. H., C. H. Luo, C. P. Morris, M. Li, N. J. Swanson, A. Amadi, N. Gallagher, and A. Pekosz (2021) SARS-CoV-2 infections in MRNA vaccinated individuals are biased for viruses encoding spike E484K and associated with reduced infectious virus loads that correlate with respiratory antiviral IgG levels. medRxiv. 2021.07.05.21259105.

  24. Nonaka, C. K. V., M. M. Franco, T. Gräf, C. A. de Lorenzo Barcia, R. N. de Ávila Mendonça, K. A. F. de Sousa, L. M. C. Neiva, V. Fosenca, A. V. A. Mendes, R. S. de Aguiar, M. Giovanetti, and B. S. de Freitas Souza (2021) Genomic evidence of SARS-CoV-2 reinfection involving E484K spike mutation, Brazil. Emerg. Infect. Dis. 27: 1522–1524.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leung, K., M. H. Shum, G. M. Leung, T. T. Lam, and J. T. Wu (2021) Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 26: 2002106.

    PubMed Central  Google Scholar 

  26. Kuzmina, A., Y. Khalaila, O. Voloshin, A. Keren-Naus, L. Boehm-Cohen, Y. Raviv, Y. Shemer-Avni, E. Rosenberg, and R. Taube (2021) SARS-CoV-2 spike variants exhibit differential infectivity and neutralization resistance to convalescent or postvaccination sera. Cell Host Microbe. 29: 522–528.e2.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Tian, F., B. Tong, L. Sun, S. Shi, B. Zheng, Z. Wang, X. Dong, and P. Zheng (2021) N501Y mutation of spike protein in SARS-CoV-2 strengthens its binding to receptor ACE2. Elife. 10: e69091.

    PubMed  PubMed Central  Google Scholar 

  28. Starr, T. N., A. J. Greaney, S. K. Hilton, D. Ellis, K. H. D. Crawford, A. S. Dingens, M. J. Navarro, J. E. Bowen, M. A. Tortorici, A. C. Walls, N. P. King, D. Veesler, and J. D. Bloom (2020) Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 182: 1295–1310.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Santos, J. C. and G. A. Passos (2021) The high infectivity of SARS-CoV-2 B.1.1.7 is associated with increased interaction force between spike-ACE2 caused by the viral N501Y mutation. bioRxiv. 2020.12.29.424708.

  30. Ali, F., A. Kasry, and M. Amin (2021) The new SARS-CoV-2 strain shows a stronger binding affinity to ACE2 due to N501Y mutant. Med. Drug Discov. 10: 100086.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Rees-Spear, C., L. Muir, S. A. Griffith, J. Heaney, Y. Aldon, J. L. Snitselaar, P. Thomas, C. Graham, J. Seow, N. Lee, A. Rosa, C. Roustan, C. F. Houlihan, R. W. Sanders, R. K. Gupta, P. Cherepanov, H. J. Stauss, E. Nastouli, SAFER Investigators, K. J. Doores, M. J. van Gils, and L. E. McCoy (2021) The effect of spike mutations on SARS-CoV-2 neutralization. Cell Rep. 34: 108890.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng, L., S. Song, B. Zhou, X. Ge, J. Yu, M. Zhang, B. Ju, and Z. Zhang (2021) Impact of the N501Y substitution of SARS-CoV-2 spike on neutralizing monoclonal antibodies targeting diverse epitopes. Virol. J. 18: 87.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Rathnasinghe, R., S. Jangra, A. Cupic, C. Martínez-Romero, L. C. F. Mulder, T. Kehrer, S. Yildiz, A. Choi, I. Mena, J. De Vrieze, S. Aslam, D. Stadlbauer, D. A. Meekins, C. D. McDowell, V. Balaraman, J. A. Richt, B. G. De Geest, L. Miorin, F. Krammer, V. Simon, A. García-Sastre, and M. Schotsaert (2021) The N501Y mutation in SARS-CoV-2 spike leads to morbidity in obese and aged mice and is neutralized by convalescent and postvaccination human sera. medRxiv. 2021.01.19.21249592.

  34. Zhu, X., D. Mannar, S. S. Srivastava, A. M. Berezuk, J. P. Demers, J. W. Saville, K. Leopold, W. Li, D. S. Dimitrov, K. S. Tuttle, S. Zhou, S. Chittori, and S. Subramaniam (2021) Cryoelectron microscopy structures of the N501Y SARS-CoV-2 spike protein in complex with ACE2 and 2 potent neutralizing antibodies. PLoS Biol. 19: e3001237.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Luan, B. and T. Huynh (2021) Insights into SARS-CoV-2’s mutations for evading human antibodies: Sacrifice and survival. J. Med. Chem. doi: https://doi.org/10.1021/acs.jmedchem.1c00311.

  36. Li, Q., J. Nie, J. Wu, L. Zhang, R. Ding, H. Wang, Y. Zhang, T. Li, S. Liu, M. Zhang, C. Zhao, H. Liu, L. Nie, H. Qin, M. Wang, Q. Lu, X. Li, J. Liu, H. Liang, Y. Shi, Y. Shen, L. Xie, L. Zhang, X. Qu, W. Xu, W. Huang, and Y. Wang (2021) SARS-CoV-2 501Y.V2 variants lack higher infectivity but do have immune escape. Cell. 184: 2362–2371.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Motozono, C., M. Toyoda, J. Zahradnik, A. Saito, H. Nasser, T. S. Tan, I. Ngare, I. Kimura, K. Uriu, Y. Kosugi, Y. Yue, R. Shimizu, J. Ito, S. Torii, A. Yonekawa, N. Shimono, Y. Nagasaki, R. Minami, T. Toya, N. Sekiya, T. Fukuhara, Y. Matsuura, G. Schreiber, T. Ikeda, S. Nakagawa, T. Ueno, and K. Sato (2021) SARS-CoV-2 spike L452R variant evades cellular immunity and increases infectivity. Cell Host Microbe. 29: 1124–1136.e11.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Deng, X., M. A. Garcia-Knight, M. M. Khalid, V. Servellita, C. Wang, M. K. Morris, A. Sotomayor-González, D. R. Glasner, K. R. Reyes, A. S. Gliwa, N. P. Reddy, C. Sanchez San Martin, S. Federman, J. Cheng, J. Balcerek, J. Taylor, J. A. Streithorst, S. Miller, B. Sreekumar, P. Y. Chen, U. Schulze-Gahmen, T. Y. Taha, J. M. Hayashi, C. R. Simoneau, G. R. Kumar, S. McMahon, P. V. Lidsky, Y. Xiao, P. Hemarajata, N. M. Green, A. Espinosa, C. Kath, M. Haw, J. Bell, J. K. Hacker, C. Hanson, D. A. Wadford, C. Anaya, D. Ferguson, P. A. Frankino, H. Shivram, L. F. Lareau, S. K. Wyman, M. Ott, R. Andino, and C. Y. Chiu (2021) Transmission, infectivity, and neutralization of a spike L452R SARS-CoV-2 variant. Cell. 184: 3426–3439.e8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Mor, O., M. Mandelboim, S. Fleishon, E. Bucris, D. Bar-Ilan, M. Linial, I. Nemet, L. Kliker, Y. Lustig, E. S. Mendelson, and N. S. Zuckerman (2021) The rise and fall of a local SARS-CoV-2 variant with the spike protein mutation L452R. Vaccines (Basel). 9: 937.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. McCallum, M., J. Bassi, A. De Marco, A. Chen, A. C. Walls, J. Di Iulio, M. A. Tortorici, M. J. Navarro, C. Silacci-Fregni, C. Saliba, K. R. Sprouse, M. Agostini, D. Pinto, K. Culap, S. Bianchi, S. Jaconi, E. Cameroni, J. E. Bowen, S. W. Tilles, M. S. Pizzuto, S. B. Guastalla, G. Bona, A. F. Pellanda, C. Garzoni, W. C. Van Voorhis, L. E. Rosen, G. Snell, A. Telenti, H. W. Virgin, L. Piccoli, D. Corti, and D. Veesler (2021) SARS-CoV-2 immune evasion by the B.1.427/B.1.429 variant of concern. Science. 373: 648–654.

    CAS  PubMed  Google Scholar 

  41. Saito, A., T. Irie, R. Suzuki, T. Maemura, H. Nasser, K. Uriu, Y. Kosugi, K. Shirakawa, K. Sadamasu, I. Kimura, J. Ito, J. Wu, K. Iwatsuki-Horimoto, M. Ito, S. Yamayoshi, S. Ozono, E. P. Butlertanaka, Y. L. Tanaka, R. Shimizu, K. Shimizu, K. Yoshimatsu, R. Kawabata, T. Sakaguchi, K. Tokunaga, I. Yoshida, H. Asakura, M. Nagashima, Y. Kazuma, R. Nomura, Y. Horisawa, K. Yoshimura, A. Takaori-Kondo, M. Imai, The Genotype to Phenotype Japan (G2P-Japan) Consortium, S. Nakagawa, T. Ikeda, T. Fukuhara, Y. Kawaoka, and K. Sato (2021) SARS-CoV-2 spike P681R mutation, a hallmark of the delta variant, enhances viral fusogenicity and pathogenicity. bioRxiv. 2021.06.17.448820.

  42. Liu, Y., J. Liu, B. A. Johnson, H. Xia, Z. Ku, C. Schindewolf, S. G. Widen, Z. An, S. C. Weaver, V. D. Menachery, X. Xie, and P. Y. Shi (2021) Delta spike P681R mutation enhances SARS-CoV-2 fitness over alpha variant. bioRxiv. 2021.08.12.456173.

  43. Higgins-Dunn, N. (2020) The U.K. has identified a new Covid-19 strain that spreads more quickly. Here’s what they know. https://www.cnbc.com.

  44. Outbreak.info, B.1.1.7 Lineage Report. https://outbreak.info/situation-reports?pango=B.1.1.7.

  45. Chand, M., S. Hopkins, G. Dabrera, C. Achison, W. Barclay, N. Ferguson, E. Volz, N. Loman, A. Rambaut, and J. Barrett (2020) Investigation of novel SARS-COV-2 variant: Variant of concern 202012/01. Public Health England 21.

  46. Davies, N. G., S. Abbott, R. C. Barnard, C. I. Jarvis, A. J. Kucharski, J. D. Munday, C. A. B. Pearson, T. W. Russell, D. C. Tully, A. D. Washburne, T. Wenseleers, A. Gimma, W. Waites, K. L. M. Wong, K. van Zandvoort, J. D. Silverman, CMMID COVID-19 Working Group, COVID-19 Genomics UK (COG-UK) Consortium, K. Diaz-Ordaz, R. Keogh, R. M. Eggo, S. Funk, M. Jit, K. E. Atkins, and W. J. Edmunds (2021) Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. medRxiv. 372: eabg3055.

    CAS  Google Scholar 

  47. Volz, E., S. Mishra, M. Chand, J. C. Barrett, R. Johnson, L. Geidelberg, W. R. Hinsley, D. J. Laydon, G. Dabrera, Á. O’Toole, R. Amato, M. Ragonnet-Cronin, I. Harrison, B. Jackson, C. V. Ariani, O. Boyd, N. J. Loman, J. T. McCrone, S. Gonçalves, D. Jorgensen, R. Myers, V. Hill, D. K. Jackson, K. Gaythorpe, N. Groves, J. Sillitoe, D. P. Kwiatkowski, The COVID-19 Genomics UK (COG-UK) consortium, S. Flaxman, O. Ratmann, S. Bhatt, S. Hopkins, A. Gandy, A. Rambaut, and N. M. Ferguson (2021) Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England. Nature. 593: 266–269.

    CAS  PubMed  Google Scholar 

  48. Port, J. R., C. K. Yinda, V. A. Avanzato, J. E. Schulz, M. G. Holbrook, N. van Doremalen, C. Shaia, R. J. Fischer, and V. J. Munster (2021) Increased aerosol transmission for B.1.1.7 (alpha variant) over lineage a variant of SARS-CoV-2. bioRxiv. 2021.07.26.453518.

  49. Ramanathan, M., I. D. Ferguson, W. Miao, and P. A. Khavari (2021) SARS-CoV-2 B.1.1.7 and B.1.351 spike variants bind human ACE2 with increased affinity. Lancet Infect. Dis. 21: 1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhou, D., W. Dejnirattisai, P. Supasa, C. Liu, A. J. Mentzer, H. M. Ginn, Y. Zhao, H. M. E. Duyvesteyn, A. Tuekprakhon, R. Nutalai, B. Wang, G. C. Paesen, C. Lopez-Camacho, J. Slon-Campos, B. Hallis, N. Coombes, K. Bewley, S. Charlton, T. S. Walter, D. Skelly, S. F. Lumley, C. Dold, R. Levin, T. Dong, A. J. Pollard, J. C. Knight, D. Crook, T. Lambe, E. Clutterbuck, S. Bibi, A. Flaxman, M. Bittaye, S. Belij-Rammerstorfer, S. Gilbert, W. James, M. W. Carroll, P. Klenerman, E. Barnes, S. J. Dunachie, E. E. Fry, J. Mongkolsapaya, J. Ren, D. I. Stuart, and G. R. Screaton (2021) Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and vaccine-induced sera. Cell. 184: 2348–2361.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Emary, K. R. W., T. Golubchik, P. K. Aley, C. V. Ariani, B. Angus, S. Bibi, B. Blane, D. Bonsall, P. Cicconi, S. Charlton, E. A. Clutterbuck, A. M. Collins, T. Cox, T. C. Darton, C. Dold, A. D. Douglas, C. J. A. Duncan, K. J. Ewer, A. Flaxman, S. N. Faust, D. M. Ferreira, S. Feng, A. Finn, P. M. Folegatti, M. Fuskova, E. Galiza, A. L. Goodman, C. M. Green, C. A. Green, M. Greenland, B. Hallis, P. T. Heath, J. Hay, H. C. Hill, D. Jenkin, S. Kerridge, R. Lazarus, V. Libri, P. J. Lillie, C. Ludden, N. G. Marchevsky, A. M. Minassian, A. C. McGregor, Y. F. Mujadidi, D. J. Phillips, E. Plested, K. M. Pollock, H. Robinson, A. Smith, R. Song, M. D. Snape, R. K. Sutherland, E. C. Thomson, M. Toshner, D. P. J. Turner, J. Vekemans, T. L. Villafana, C. J. Williams, A. V. S. Hill, T. Lambe, S. C. Gilbert, M. Voysey, M. N. Ramasamy, A. J. Pollard, The COVID-19 Genomics UK (COG-UK) consortium, and the Oxford COVID Vaccine Trial Group (2021) Efficacy of ChAdOx1 NCoV-19 (AZD1222) vaccine against SARS-CoV-2 VOC 202012/01 (B.1.1.7). https://doi.org/10.2139/ssrn.3779160.

  52. Supasa, P., D. Zhou, W. Dejnirattisai, C. Liu, A. J. Mentzer, H. M. Ginn, Y. Zhao, H. M. E. Duyvesteyn, R. Nutalai, A. Tuekprakhon, B. Wang, G. C. Paesen, J. Slon-Campos, C. López-Camacho, B. Hallis, N. Coombes, K. R. Bewley, S. Charlton, T. S. Walter, E. Barnes, S. J. Dunachie, D. Skelly, S. F. Lumley, N. Baker, I. Shaik, H. E. Humphries, K. Godwin, N. Gent, A. Sienkiewicz, C. Dold, R. Levin, T. Dong, A. J. Pollard, J. C. Knight, P. Klenerman, D. Crook, T. Lambe, E. Clutterbuck, S. Bibi, A. Flaxman, M. Bittaye, S. Belij-Rammerstorfer, S. Gilbert, D. R. Hall, M. A. Williams, N. G. Paterson, W. James, M. W. Carroll, E. E. Fry, J. Mongkolsapaya, J. Ren, D. I. Stuart, and G. R. Screaton (2021) Reduced neutralization of SARS-CoV-2 B.1.1.7 variant by convalescent and vaccine sera. Cell 184: 2201–2211.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Tegally, H., E. Wilkinson, R. J. Lessells, J. Giandhari, S. Pillay, N. Msomi, K. Mlisana, J. N. Bhiman, A. von Gottberg, S. Walaza, V. Fonseca, M. Allam, A. Ismail, A. J. Glass, S. Engelbrecht, G. Van Zyl, W. Preiser, C. Williamson, F. Petruccione, A. Sigal, I. Gazy, D. Hardie, N. Hsiao, D. Martin, D. York, D. Goedhals, E. J. San, M. Giovanetti, J. Lourenço, L. C. J. Alcantara, and T. de Oliveira (2021) Sixteen novel lineages of SARS-CoV-2 in South Africa. Nat. Med. 27: 440–446.

    CAS  PubMed  Google Scholar 

  54. Outbreak.info, B.1.351 Lineage Report. https://outbreak.info/situation-reports?pango=B.1.351.

  55. Tegally, H., E. Wilkinson, M. Giovanetti, A. Iranzadeh, V. Fonseca, J. Giandhari, D. Doolabh, S. Pillay, E. J. San, N. Msomi, K. Mlisana, A. von Gottberg, S. Walaza, M. Allam, A. Ismail, T. Mohale, A. J. Glass, S. Engelbrecht, G. Van Zyl, W. Preiser, F. Petruccione, A. Sigal, D. Hardie, G. Marais, M. Hsiao, S. Korsman, M. A. Davies, L. Tyers, I. Mudau, D. York, C. Maslo, D. Goedhals, S. Abrahams, O. Laguda-Akingba, A. Alisoltani-Dehkordi, A. Godzik, C. K. Wibmer, B. T. Sewell, J. Lourenço, L. C. J. Alcantara, S. L. K. Pond, S. Weaver, D. Martin, R. J. Lessells, J. N. Bhiman, C. Williamson, and T. de Oliveira (2020) Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020.12.21.20248640.

  56. Pearson, C. A. B., T. W. Russell, N. Davies, A. J. Kucharski, CMMID COVID-19 working group, W. J. Edmunds, and R. M. Eggo (2021) Estimates of severity and transmissibility of novel South Africa SARS-CoV-2 variant 501Y. V2. https://cmmid.github.io/topics/covid19/sa-novel-variant.html.

  57. Hoffmann, M., P. Arora, R. Groß, A. Seidel, B. F. Hörnich, A. S. Hahn, N. Krüger, L. Graichen, H. Hofhiann-Winkler, A. Kempf, M. S. Winkler, S. Schulz, H. M. Jäck, B. Jahrsdörfer, H. Schrezenmeier, M. Müller, A. Kleger, J. Münch, and S. Pöhlmann (2021) SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell. 184: 2384–2393.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Public Health Emergency, Pause in the distribution of bamlanivimab/etesevimab. https://www.phe.gov/emergency/events/COVID19/investigation-MCM/Bamlanivimab-etesevimab/Pages/bamlanivimab-etesevimab-distribution-pause.aspx.

  59. Umair, M., A. Ikram, M. Salman, N. Badar, S. A. Haider, Z. Rehman, M. Ammar, M. S. Rana, and Q. Ali (2021) Detection and whole-genome sequencing of SARS-CoV-2 B.1.617.2 and B.1.351 variants of concern from Pakistan during the COVID-19 third wave. medRxiv. 2021.07.14.21259909.

  60. Brown, K. A., E. Joh, S. A. Buchan, N. Daneman, S. Mishra, S. Patel, and T. Day (2021) Inflection in prevalence of SARS-CoV-2 infections missing the N501Y mutation as a marker of rapid delta (B.1.617.2) lineage expansion in Ontario, Canada. medRxiv. 2021.06.22.21259349.

  61. Khan, A., D. Q. Wei, K. Kousar, J. Abubaker, S. Ahmad, J. Ali, F. Al-Mulla, S. S. Ali, N. Nizam-Uddin, A. M. Sayaf, and A. Mohammad (2021) Preliminary structural data revealed that the SARS-CoV-2 B.1.617 variant’s RBD binds to ACE2 receptor stronger than the wild type to enhance the infectivity. ChemBioChem. 22: 2641–2649.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Allen, H., A. Vusirikala, J. Flannagan, K. A. Twohig, A. Zaidi, COG-UK Consortium, N. Groves, J. Lopez-Bernal, R. Harris, A. Charlett, G. Dabrera, and M. Kall (2021) Increased household transmission of COVID-19 cases associated with SARS-CoV-2 variant of concern B.1.617.2: A national case-control study. https://khub.net/documents/135939561/405676950/Increased+Household+Transmission+of+COVID-19+Cases+-+national+case+study.pdf/7f7764fb-ecb0-da31-77b3-b1a8ef7be9aa.

  63. Mlcochova, P., S. A. Kemp, M. S. Dhar, G. Papa, B. Meng, I. A. T. M. Ferreira, R. Datir, D. A. Collier, A. Albecka, S. Singh, R. Pandey, J. Brown, J. Zhou, N. Goonawardane, S. Mishra, C. Whittaker, T. Mellan, R. Marwal, M. Datta, S. Sengupta, K. Ponnusamy, V. S. Radhakrishnan, A. Abdullahi, O. Charles, P. Chattopadhyay, P. Devi, D. Caputo, T. Peacock, C. Wattal, N. Goel, A. Satwik, R. Vaishya, M. Agarwal, The Indian SARS-CoV-2 Genomics Consortium (INSACOG), The Genotype to Phenotype Japan (G2P-Japan) Consortium, The CITIID-NIHR BioResource COVID-19 Collaboration, A. Mavousian, J. H. Lee, J. Bassi, C. Silacci-Fegni, C. Saliba, D. Pinto, T. Irie, I. Yoshida, W. L. Hamilton, K. Sato, S. Bhatt, S. Flaxman, L. C. James, D. Corti, L. Piccoli, W. S. Barclay, P. Rakshit, A. Agrawal, and R. K. Gupta (2021) SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion. Nature. 599: 114–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Planas, D., D. Veyer, A. Baidaliuk, I. Staropoli, F. Guivel-Benhassine, M. M. Rajah, C. Planchais, F. Porrot, N. Robillard, J. Puech, M. Prot, F. Gallais, P. Gantner, A. Velay, J. Le Guen, N. Kassis-Chikhani, D. Edriss, L. Belec, A. Seve, L. Courtellemont, H. Péré, L. Hocqueloux, S. Fafi-Kremer, T. Prazuck, H. Mouquet, T. Bruel, E. Simon-Lorière, F. A. Rey, and O. Schwartz (2021) Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 596: 276–280.

    CAS  PubMed  Google Scholar 

  65. Sheikh, A., J. McMenamin, B. Taylor, and C. Robertson (2021) SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet. 397: 2461–2462.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lopez Bernal, J., N. Andrews, C. Gower, E. Gallagher, R. Simmons, S. Thelwall, J. Stowe, E. Tessier, N. Groves, G. Dabrera, R. Myers, C. N. J. Campbell, G. Amirthalingam, M. Edmunds, M. Zambon, K. E. Brown, S. Hopkins, M. Chand, and M. Ramsay (2021) Effectiveness of Covid-19 vaccines against the B.1.617.2 (Delta) variant. N. Engl. J. Med. 385: 585–594.

    PubMed  Google Scholar 

  67. Ong, S. W. X., C. J. Chiew, L. W. Ang, T. M. Mak, L. Cui, M. P. H. S. Toh, Y. D. Lim, P. H. Lee, T. H. Lee, P. Y. Chia, S. Maurer-Stroh, R. T. P. Lin, Y. S. Leo, V. J. Lee, D. C. Lye, and B. E. Young (2021) Clinical and virological features of SARS-CoV-2 variants of concern: A retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315 (Beta), and B.1.617.2 (Delta). https://doi.org/10.2139/ssrn.3861566.

  68. Faria, N. R., T. A. Mellan, C. Whittaker, I. M. Claro, D. D. S. Candido, S. Mishra, M. A. E. Crispim, F. C. S. Sales, I. Hawryluk, J. T. McCrone, R. J. G. Hulswit, L. A. M. Franco, M. S. Ramundo, J. G. de Jesus, P. S. Andrade, T. M. Coletti, G. M. Ferreira, C. A. M. Silva, E. R. Manuli, R. H. M. Pereira, P. S. Peixoto, M. U. G. Kraemer, N. Gaburo Jr, C. D. C. Camilo, H. Hoeltgebaum, W. M. Souza, E. C. Rocha, L. M. de Souza, M. C. de Pinho, L. J. T. Araujo, F. S. V. Malta, A. B. de Lima, J. D. P. Silva, D. A. G. Zauli, A. C. D. S. Ferreira, R. P. Schnekenberg, D. J. Laydon, P. G. T. Walker, H. M. Schlüter, A. L. P. Dos Santos, M. S. Vidal, V. S. Del Caro, R. M. F. Filho, H. M. Dos Santos, R. S. Aguiar, J. L. Proença-Modena, B. Nelson, J. A. Hay, M. Monod, X. Miscouridou, H. Coupland, R. Sonabend, M. Vollmer, A. Gandy, C. A. Prete Jr, V. H. Nascimento, M. A. Suchard, T. A. Bowden, S. L. K. Pond, C. H. Wu, O. Ratmann, N. M. Ferguson, C. Dye, N. J. Loman, P. Lemey, A. Rambaut, N. A. Fraiji, M. D. P. S. S. Carvalho, O. G. Pybus, S. Flaxman, S. Bhatt, and E. C. Sabino (2021) Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Science. 372: 815–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Outbreak.info, P.1 Lineage Report. https://outbreak.info/situation-reports?pango=P.1.

  70. Naveca, F. G., V. Nascimento, V. C. de Souza, A. de Lima Corado, F. Nascimento, G. Silva, Á. Costa, D. Duarte, K. Pessoa, M. Mejía, M. J. Brandão, M. Jesus, L. Gonçalves, C. F. da Costa, V. Sampaio, D. Barros, M. Silva, T. Mattos, G. Pontes, L. Abdalla, J. H. Santos, I. Arantes, F. Z. Dezordi, M. M. Siqueira, G. L. Wallau, P. C. Resende, E. Delatorre, T. Gräf, and G. Bello (2021) COVID-19 in Amazonas, Brazil, was driven by the persistence of endemic lineages and P.1 emergence. Nat. Med. 27: 1230–1238.

    CAS  PubMed  Google Scholar 

  71. Coutinho, R. M., F. M. D. Marquitti, L. S. Ferreira, M. E. Borges, R. L. P. da Silva, O. Canton, T. P. Portella, S. Poloni, C. Franco, M. M. Plucinski, F. C. Lessa, A. A. M. da Silva, R. A. Kraenkel, M. A. de Sousa Mascena Veras, and P. I. Prado (2021) Modelbased estimation of transmissibility and reinfection of SARS-CoV-2 P.1 variant. medRxiv. 2021.03.03.21252706.

  72. Dejnirattisai, W., D. Zhou, P. Supasa, C. Liu, A. J. Mentzer, H. M. Ginn, Y. Zhao, H. M. E. Duyvesteyn, A. Tuekprakhon, R. Nutalai, B. Wang, C. López-Camacho, J. Slon-Campos, T. S. Walter, D. Skelly, S. A. C. Clemens, F. G. Naveca, V. Nascimento, F. Nascimento, C. F. da Costa, P. C. Resende, A. Pauvolid-Correa, M. M. Siqueira, C. Dold, R. Levin, T. Dong, A. J. Pollard, J. C. Knight, D. Crook, T. Lambe, E. Clutterbuck, S. Bibi, A. Flaxman, M. Bittaye, S. Belij-Rammerstorfer, S. C. Gilbert, M. W. Carroll, P. Klenerman, E. Barnes, S. J. Dunachie, N. G. Paterson, M. A. Williams, D. R. Hall, R. J. G. Hulswit, T. A. Bowden, E. E. Fry, J. Mongkolsapaya, J. Ren, D. I. Stuart, and G. R. Screaton (2021) Antibody evasion by the P.1 strain of SARS-CoV-2. Cell. 184: 2939–2954.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Falcone, M., G. Tiseo, B. Valoriani, C. Barbieri, S. Occhineri, P. Mazzetti, M. L. Vatteroni, L. R. Suardi, N. Riccardi, M. Pistello, D. Tacconi, and F. Menichetti (2021) Efficacy of bamlanivimab/etesevimab and casirivimab/imdevimab in preventing progression to severe COVID-19 and role of variants of concern. Infect. Dis. Ther. 10: 2479–2488.

    PubMed  PubMed Central  Google Scholar 

  74. Wang, P., R. G. Casner, M. S. Nair, M. Wang, J. Yu, G. Cerutti, L. Liu, P. D. Kwong, Y. Huang, L. Shapiro, and D. D. Ho (2021) Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe. 29: 747–751.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Messali, S., A. Bertelli, G. Campisi, A. Zani, M. Ciccozzi, A. Caruso, and F. Caccuri (2021) A cluster of the new SARS-CoV-2 B.1.621 lineage in Italy and sensitivity of the viral isolate to the BNT162b2 vaccine. J. Med. Virol. 93: 6468–6470.

    CAS  PubMed  Google Scholar 

  76. Acevedo, M. L., L. Alonso-Palomares, A. Bustamante, A. Gaggero, F. Paredes, C. P. Cortés, F. Valiente-Echeverría, and R. Soto-Rifo (2021) Infectivity and immune escape of the new SARS-CoV-2 variant of interest Lambda. medRxiv. 2021.06.28.21259673.

  77. Amin, M., M. K. Sorour, and A. Kasry (2020) Comparing the binding interactions in the receptor binding domains of SARS-CoV-2 and SARS-CoV. J. Phys. Chem. Lett. 11: 4897–4900.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Cele, S., I. Gazy, L. Jackson, S. H Hwa, H. Tegally, G. Lustig, J. Giandhari, S. Pillay, E. Wilkinson, Y. Naidoo, F. Karim, Y. Ganga, K. Khan, M. Bernstein, A. B. Balazs, B. I. Gosnell, W. Hanekom, M. Y. S. Moosa, Network for Genomic Surveillance in South Africa, COMMIT-KZN Team, R. J. Lessells, T. de Oliveira, and A. Sigal (2021) Escape of SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature. 593: 142–146.

    CAS  PubMed  Google Scholar 

  79. Zahradník, J., S. Marciano, M. Shemesh, E. Zoler, D. Harari, J. Chiaravalli, B. Meyer, Y. Rudich, C. Li, I. Marton, O. Dym, N. Elad, M. G. Lewis, H. Andersen, M. Gagne, R. A. Seder, D. C. Douek, and G. Schreiber (2021) SARS-CoV-2 variant prediction and antiviral drug design are enabled by RBD in vitro evolution. Nat. Microbiol. 6: 1188–1198.

    PubMed  Google Scholar 

  80. Eguia, R., K. H. D. Crawford, T. Stevens-Ayers, L. Kelnhofer-Millevolte, A. L. Greninger, J. A. Englund, M. J. Boeckh, and J. D. Bloom (2021) A human coronavirus evolves antigenically to escape antibody immunity. PLoS Pathog. 17: e1009453.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kistler, K. E. and T. Bedford (2021) Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229e. eLife 10: e64509.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhou, T., Y. Tsybovsky, A. S. Olia, J. Gorman, M. A. Rapp, G. Cerutti, P. S. Katsamba, A. Nazzari, A. Schön, P. Wang, J. Bimela, W. Shi, I. T. Teng, B. Zhang, J. C. Boyington, G. Y. Chuang, J. M. Sampson, M. Sastry, T. Stephens, J. Stuckey, S. Wang, R. A. Friesner, D. D. Ho, J. R. Mascola, L. Shapiro, and P. D. Kwong (2020) A pH-dependent switch mediates conformational masking of SARS-CoV-2 spike. bioRxiv. 2020.07.04.187989.

  83. Benton, D. J., A. G. Wrobel, P. Xu, C. Roustan, S. R. Martin, P. B. Rosenthal, J. J. Skehel, and S. J. Gamblin (2020) Receptor binding and priming of the spike protein of SARS-CoV-2 for membrane fusion. Nature. 588: 327–330.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Miersch, S., Z. Li, R. Saberianfar, M. Ustav, J. B. Case, L. Blazer, C. Chen, W. Ye, A. Pavlenco, M. Gorelik, J. G. Perez, S. Subramania, S. Singh, L. Ploder, S. Ganaie, R. E. Chen, D. W. Leung, P. P. Pandolfi, G. Novelli, G. Matusali, F. Colavita, M. R. Capobianchi, S. Jain, J. B. Gupta, G. K. Amarasinghe, M. S. Diamond, J. Rini, and S. S. Sidhu (2021) Tetravalent SARS-CoV-2 neutralizing antibodies show enhanced potency and resistance to escape mutations. J. Mol. Biol. 433: 167177.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Janson, G., C. Zhang, M. G. Prado, and A. Paiardini (2017) PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinform. 33: 444–446.

    CAS  Google Scholar 

Download references

Acknowledgment

Special thanks to Dr. Jihee Park, who produced Fig. 1.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing-original draft preparation G.P., writing-review and editing, B.H. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Byeong Hee Hwang.

Ethics declarations

Conflicts of Interests The authors declare no conflict of interest.

Informed Consent Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, G., Hwang, B.H. SARS-CoV-2 Variants: Mutations and Effective Changes. Biotechnol Bioproc E 26, 859–870 (2021). https://doi.org/10.1007/s12257-021-0327-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0327-3

Keywords

  • SARS-CoV-2
  • variants
  • mutation
  • infectivity
  • neutralization