Skip to main content

Biocatalytic Production and Purification of the High-value Biochemical Paraxanthine

Abstract

Paraxanthine (1,7-dimethylxanthine), a purine alkaloid derivative of caffeine (1,3,7-trimethylxanthine), is a high-value biochemical with several applications in the pharmaceutical and cosmetic industries. However, chemical synthesis of paraxanthine requires harsh conditions and frequently results in low yield mixtures of non-specifically N-methylated compounds. We have recently demonstrated that the mutant bacterial N-demethylase NdmA4 with its partner reductase NdmD is capable of producing paraxanthine as the major metabolite from caffeine. Here, we report the construction and screening of several Escherichia coli strains to produce paraxanthine from caffeine by means of whole-cell biocatalysts using varying dosages of ndmA4, ndmD, and the frmAB formaldehyde dehydrogenase genes. Preliminary resting cell assay results with the best paraxanthine-producing strain, MBM019, showed a 33% molar conversion of caffeine, from 5 mM to 3.35 mM, resulting in approximately 0.90 mM paraxanthine. However, a small amount of 7-methylxanthine was unexpectedly produced at a concentration of approximately 0.35 mM. After optimizing reaction conditions to a cellular concentration of OD600 = 50 and a caffeine concentration of 5 mM, the reaction was scaled-up to a volume of 620 mL, producing 1.02 mM paraxanthine and consuming 2.49 mM caffeine. The purified paraxanthine was then isolated via preparatory scale chromatography, resulting in 104.1 mg of product at high purity. This is the first reported strain genetically optimized for the biosynthetic production of paraxanthine.

This is a preview of subscription content, access via your institution.

References

  1. Franco, R., A. Oñatibia-Astibia, and E. Martínez-Pinilla (2013) Health benefits of methylxanthines in cacao and chocolate. Nutrients. 5: 4159–4173.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Singh, N., A. K. Shreshtha, M. S. Thakur, and S. Patra (2018) Xanthine scaffold: scope and potential in drug development. Heliyon. 4: e00829.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Constantin, S., F. G. Lupascu, M. Apotrosoaei, I. M. Vasincu, D. Lupascu, F. Buron, S. Routier, and L. Profire (2017) Synthesis and biological evaluation of the new 1,3-dimethylxanthlne derivatives with thiazolidine-4-one scaffold. Chem. Cent. J. 11: 12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Xu, K., Y.-H. Xu, J.-F. Chen, and M. A. Schwarzschild (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson’s disease. Neuroscience. 167: 475–481.

    CAS  Article  PubMed  Google Scholar 

  5. Janitschke, D., A. A. Lauer, C. M. Bachmann, H. S. Grimm, T. Hartmann, and M. O. Grimm (2021) Methylxanthines and neurodegenerative diseases: an update. Nutrients. 13: 803.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Oñatibia-Astibia, A., R. Franco, and E. Martínez-Pinilla (2017) Health benefits of methylxanthines in neurodegenerative diseases. Mol. Nutr. Food Res. 61: 1600670.

    Article  CAS  Google Scholar 

  7. Negida, A., M. Elfil, A. Attia, E. Farahat, M. Gabr, A. Essam, D. Attia, and H. Ahmed (2017) Caffeine; the forgotten potential for Parkinson’s disease. CNS Neurol. Disord. Drug Targets. 16: 652–657.

    CAS  Article  PubMed  Google Scholar 

  8. Ross, G. W., R. D. Abbott, H. Petrovitch, D. M. Morens, A. Grandinetti, K.-H. Tung, C. M. Tanner, K. H. Masaki, P. L. Blanchette, J. D. Curb, J. S. Popper, and L. R. White (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA. 283: 2674–2679.

    CAS  Article  PubMed  Google Scholar 

  9. Ponte, B., M. Pruijm, D. Ackermann, G. Ehret, N. Ansermot, J. A. Staessen, B. Vogt, A. Pechère-Bertschi, M. Burnier, P.-Y. Martin, C. B. Eap, M. Bochud, and I. Guessous (2018) Associations of urinary caffeine and caffeine metabolites with arterial stiffness in a large population-based study. Mayo Clin. Proc. 93: 586–596.

    CAS  Article  PubMed  Google Scholar 

  10. Scurachio, R. S., F. Mattiucci, W. G. Santos, L. H. Skibsted, and D. R. Cardoso (2016) Caffeine metabolites not caffeine protect against riboflavin photosensitized oxidative damage related to skin and eye health. J. Photochem. Photobiol. B 163: 277–283.

    CAS  Article  PubMed  Google Scholar 

  11. Nunnari, G., E. Argyris, J. Fang, K. E. Mehlman, R. J. Pomerantz, and R. Daniel (2005) Inhibition of HIV-1 replication by caffeine and caffeine-related methylxanthines. Virology. 335: 177–184.

    CAS  Article  PubMed  Google Scholar 

  12. Lee, I.-A., A. Kamba, D. Low, and E. Mizoguchi (2014) Novel methylxanthine derivative-mediated anti-inflammatory effects in inflammatory bowel disease. World J. Gastroenterol. 20: 1127–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh, H., N. S. Sahajpal, H. Singh, V. Vanita, P. Roy, S. Paul, S. K. Singh, I. Kaur, and S. K. Jain (2021) Pre-clinical and cellular toxicity evaluation of 7-methylxanthine: an investigational drug for the treatment of myopia. Drug Chem. Toxicol. 44: 575–584.

    CAS  Article  PubMed  Google Scholar 

  14. Ferré, S., M. Orrú, and X. Guitart (2013) Paraxanthine: connecting caffeine to nitric oxide neurotransmission. J. Caffeine Res. 3: 72–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okuro, M., N. Fujiki, N. Kotorii, Y. Ishimaru, P. Sokoloff, and S. Nishino (2010) Effects of paraxanthine and caffeine on sleep, locomotor activity, and body temperature in orexin/ataxin-3 transgenic narcoleptic mice. Sleep. 33: 930–942.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Orrú, M., X. Guitart, M. Karcz-Kubicha, M. Solinas, Z. Justinova, S. K. Barodia, J. Zanoveli, A. Cortes, C. Lluis, V. Casado, F. G. Moeller, and S. Ferré (2013) Psychostimulant pharmacological profile of paraxanthine, the main metabolite of caffeine in humans. Neuropharmacology. 67: 476–484.

    Article  CAS  PubMed  Google Scholar 

  17. Negus, S. S. and L. L. Miller (2014) Intracranial self-stimulation to evaluate abuse potential of drugs. Pharmacol. Rev. 66: 869–917.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Guerreiro, S., D. Toulorge, E. Hirsch, M. Marien, P. Sokoloff, and P. P. Michel (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol. Pharmacol. 74: 980–989.

    CAS  Article  PubMed  Google Scholar 

  19. Klemmer, I., S. Yagi, and O. A. Gressner (2011) Oral application of 1,7-dimethylxanthine (paraxanthine) attenuates the formation of experimental cholestatic liver fibrosis. Hepatol. Res. 41: 1094–1109.

    CAS  Article  PubMed  Google Scholar 

  20. Geraets, L., A. Haegens, A. R. Weseler, K. Brauers, J. H. Vernooy, E. F. Wouters, A. Bast, and G. J. Hageman (2010) Inhibition of acute pulmonary and systemic inflammation by 1,7-dimethylxanthine. Eur. J. Pharmacol. 629: 132–139.

    CAS  Article  PubMed  Google Scholar 

  21. Trier, K., S. Munk Ribel-Madsen, D. Cui, and S. Brøgger Christensen (2008) Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. J. Ocul. Biol. Dis. Infor. 1: 85–93.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bertrand, B., G. M. M. Groothuis, A. Casini, S. Loic, E. Bodio, R. Philippe, P. Legendre, D. Monchaud, and M. Picquet (2014) Xanthine-based gold(I) N-heterocyclic carbene complexes: synthesis and anticancer evaluation. J. Biol. Inorg. Chem. 19: S589.

    Google Scholar 

  23. Mohamed, H. A., B. R. Lake, T. Laing, R. M. Phillips, and C. E. Willans (2015) Synthesis and anticancer activity of silver(I)-N-heterocyclic carbene complexes derived from the natural xanthine products caffeine, theophylline and theobromine. Dalton Trans. 44: 7563–7569.

    CAS  Article  PubMed  Google Scholar 

  24. Szadkowska, A., S. Staszko, E. Zaorska, and R. Pawlowski (2016) A theophylline based copper N-heterocyclic carbene complex: synthesis and activity studies in green media. RSC Adv. 6: 44248–44253.

    CAS  Article  Google Scholar 

  25. Valdés, H., D. Canseco-González, J. M. Germán-Acacio, and D. Morales-Morales (2018) Xanthine based N-heterocyclic carbene (NHC) complexes. J. Organomet. Chem. 867: 51–54.

    Article  CAS  Google Scholar 

  26. Zhang, J.-J., C.-M. Che, and I. Ott (2015) Caffeine derived platinum(II) N-heterocyclic carbene complexes with multiple anti-cancer activities. J. Organomet. Chem. 782: 37–41.

    CAS  Article  Google Scholar 

  27. Stavric, B. (1988) Methylxanthines: toxicity to humans. 3. Theobromine, paraxanthine and the combined effects of methylxanthines. Food Chem. Toxicol. 26: 725–733.

    CAS  Article  PubMed  Google Scholar 

  28. Müller, C. E., D. Deters, A. Dominik, and M. Pawlowski (1998) Synthesis of paraxanthine and isoparaxanthine analogs (1,7- and 1,9-substituted xanthine derivatives). Synthesis (Stuttg.) 1998: 1428–1436.

    Article  Google Scholar 

  29. Gulevskaya, A. V. and A. F. Pozharskii (1991) Synthesis of N-substituted xanthines (review). Chem. Heterocycl. Compd. (N. Y.) 27: 1–23.

    Article  Google Scholar 

  30. He, R., S. M. Ching, and Y. Lam (2006) Traceless solid-phase synthesis of substituted xanthines. J. Comb. Chem. 8: 923–928.

    CAS  Article  PubMed  Google Scholar 

  31. Zavialov, I. A., V. H. Dahanukar, H. Nguyen, C. Orr, F. Zhang, and D. R. Andrews (2004) New and practical method for synthesis of 1- and 1,3-substituted xanthines. Org. Lett. 6: 2237–2240. (Erratum published 2004, Org. Lett. 6: 3017)

    CAS  Article  PubMed  Google Scholar 

  32. Müller, C. E., D. Shi, M. Manning Jr., and J. W. Daly (1993) Synthesis of paraxanthine analogs (1,7-disubstituted xanthines) and other xanthines unsubstituted at the 3-position: structure-activity relationships at adenosine receptors. J. Med. Chem. 36: 3341–3349.

    Article  PubMed  Google Scholar 

  33. Ashengroph, M. (2017) Salinivibrio costicola GL6, a novel isolated strain for biotransformation of caffeine to theobromine under hypersaline conditions. Curr. Microbiol. 74: 34–41.

    CAS  Article  PubMed  Google Scholar 

  34. Summers, R. M., T. M. Louie, C. L. Yu, and M. Subramanian (2011) Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology (Reading). 157: 583–592.

    CAS  Article  PubMed  Google Scholar 

  35. Dash, S. S. and S. N. Gummadi (2010) Biodegradation of caffeine by Pseudomonas sp. NCIM 5235. Res. J. Microbiol. 5: 745–753.

    CAS  Google Scholar 

  36. Yu, C. L., T. M. Louie, R. Summers, Y. Kale, S. Gopishetty, and M. Subramanian (2009) Two distinct pathways for metabolism of theophylline and caffeine are coexpressed in Pseudomonas putida CBB5. J. Bacteriol. 191: 4624–4632.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Quandt, E. M., R. M. Summers, M. V. Subramanian, and J. E. Barrick (2015) Draft genome sequence of the bacterium Pseudomonas putida CBB5, which can utilize caffeine as a sole carbon and nitrogen source. Genome Announc. 3: e00640–15.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Summers, R. M., T. M. Louie, C.-L. Yu, L. Gakhar, K. C. Louie, and M. Subramanian (2012) Novel, highly specific N-demethylases enable bacteria to live on caffeine and related purine alkaloids. J. Bacteriol. 194: 2041–2049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Summers, R., S. Gopishetty, S. Mohanty, and M. Subramanian (2014) New genetic insights to consider coffee waste as feedstock for fuel, feed, and chemicals. Cent. Eur. J. Chem. 12: 1271–1279.

    CAS  Google Scholar 

  40. Summers, R. M., J. L. Seffernick, E. M. Quandt, C. L. Yu, J. E. Barrick, and M. V. Subramanian (2013) Caffeine junkie: an unprecedented glutathione S-transferase-dependent oxygenase required for caffeine degradation by Pseudomonas putida CBB5. J. Bacteriol. 195: 3933–3939.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Algharrawi, K. H., R. M. Summers, S. Gopishetty, and M. Subramanian (2015) Direct conversion of theophylline to 3-methylxanthine by metabolically engineered E. coli. Microb. Cell Fact. 14: 203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Algharrawi, K. H. R., R. M. Summers, and M. Subramanian (2017) Production of theobromine by N-demethylation of caffeine using metabolically engineered E. coli. Biocatal. Agric. Biotechnol. 11: 153–160.

    Article  Google Scholar 

  43. Algharrawi, K. H. R. and M. Subramanian (2020) Production of 7-methylxanthine from theobromine by metabolically engineered E. coli. Iraqi J. Chem. Pet. Eng. 21: 19–27.

    Article  Google Scholar 

  44. Mock, M. B., S. Zhang, B. Pniak, N. Belt, M. Witherspoon, and R. M. Summers (2021) Substrate promiscuity of the NdmCDE N7-demethylase enzyme complex. Biotechnol. Notes. 2: 18–25.

    CAS  Article  Google Scholar 

  45. Kim, J. H., B. H. Kim, S. Brooks, S. Y. Kang, R. M. Summers, and H. K. Song (2019) Structural and mechanistic insights into caffeine degradation by the bacterial N-demethylase complex. J. Mol. Biol. 431: 3647–3661.

    CAS  Article  PubMed  Google Scholar 

  46. Mills, S. B., M. B. Mock, and R. M. Summers (2021) Rational protein engineering of bacterial N-demethylases to create biocatalysts for the production of methylxanthines. https://doi.org/10.1101/2021.12.17.472166

  47. MacWilliams, M. P. and M.-K. Liao (2006) Luria Broth (LB) and Luria Agar (LA) Media and Their Uses Protocol. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  48. Held, D., K. Yaeger, and R. Novy (2003) New coexpression vectors for expanded compatibilities in E. coli. Innovations. 18: 4–6.

    Google Scholar 

  49. Sektas, M. and W. Szybalski (2002) Novel single-copy pETcoco vector with dual controls for amplification and expression. Innovations. 14: 10–12.

    Google Scholar 

  50. Salis, H. M. (2011) The ribosome binding site calculator. Methods Enzymol. 498: 19–42.

    CAS  Article  PubMed  Google Scholar 

  51. Retnadhas, S. and S. N. Gummadi (2018) Identification and characterization of oxidoreductase component (NdmD) of methylxanthine oxygenase system in Pseudomonas sp. NCIM 5235. Appl. Microbiol. Biotechnol. 102: 7913–7926.

    CAS  Article  PubMed  Google Scholar 

  52. Zhang, Y., Z. Huang, C. Du, Y. Li, and Z. Cao (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab. Eng. 11: 101–106.

    Article  CAS  PubMed  Google Scholar 

  53. Berríos-Rivera, S. J., G. N. Bennett, and K.-Y. San (2002) The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab. Eng. 4: 230–237.

    Article  CAS  PubMed  Google Scholar 

  54. Denby, K. J., J. Iwig, C. Bisson, J. Westwood, M. D. Rolfe, S. E. Sedelnikova, K. Higgins, M. J. Maroney, P. J. Baker, P. T. Chivers, and J. Green (2016) The mechanism of a formaldehyde-sensing transcriptional regulator. Sci. Rep. 6: 38879.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Chen, N. H., K. Y. Djoko, F. J. Veyrier, and A. G. McEwan (2016) Formaldehyde stress responses in bacterial pathogens. Front. Microbiol. 7: 257.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Gutheil, W. G., E. Kasimoglu, and P. C. Nicholson (1997) Induction of glutathione-dependent formaldehyde dehydrogenase activity in Escherichia coli and Hemophilus influenza. Biochem. Biophys. Res. Commun. 238: 693–696.

    CAS  Article  PubMed  Google Scholar 

  57. Herring, C. D. and F. R. Blattner (2004) Global transcriptional effects of a suppressor tRNA and the inactivation of the regulator frmR. J. Bacteriol. 186: 6714–6720.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Szolomájer, J., G. Paragi, G. Batta, C. F. Guerra, F. M. Bickelhaupt, Z. Kele, P. Pádár, Z. Kupihár, and L. Kovács (2011) 3-Substituted xanthines as promising candidates for quadruplex formation: computational, synthetic and analytical studies. New J. Chem. 35: 476–482.

    Article  Google Scholar 

  59. Hergueta, A. R., M. J. Figueira, C. López, O. Caamaño, F. Fernández, and J. E. Rodríguez-Borges (2002) Synthesis of series of 1- and 3-differently substituted xanthines from imidazoles. Chem. Pharm. Bull. (Tokyo) 50: 1379–1382.

    CAS  Article  Google Scholar 

  60. He, R. and Y. Lam (2005) A highly efficient solid-phase synthesis of 1,3-substituted xanthines. J. Comb. Chem. 7: 916–920.

    CAS  Article  PubMed  Google Scholar 

  61. Müller, C. E. and J. Sandoval-Ramírez (1995) A new versatile synthesis of xanthines with variable substituents in the 1-, 3-, 7-and 8-positions. Synthesis (Stuttg.) 1995: 1295–1299.

    Article  Google Scholar 

  62. McKeague, M., Y.-H. Wang, A. Cravens, M. N. Win, and C. D. Smolke (2016) Engineering a microbial platform for de novo biosynthesis of diverse methylxanthines. Metab. Eng. 38: 191–203.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Ken Belmore and the University of Alabama Department of Chemistry and Biochemistry for assistance with the NMR.

This work was supported by University of Alabama research funds. M.B. Mock is supported by the U.S. Department of Education as a GAANN Fellow (P200A180056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan M. Summers.

Ethics declarations

The authors declare no competing interests.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mock, M.B., Mills, S.B., Cyrus, A. et al. Biocatalytic Production and Purification of the High-value Biochemical Paraxanthine. Biotechnol Bioproc E 27, 640–651 (2022). https://doi.org/10.1007/s12257-021-0301-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0301-0

Keywords

  • paraxanthine
  • caffeine
  • biocatalysis
  • N-demethylase