Skip to main content
Log in

Improvement of Sleeping Beauty Transposon System Enabling Efficient and Stable Protein Production

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The most essential goal in the field of biopharmaceuticals is to develop cell lines with higher protein yields. To this goal, the Sleeping Beauty (SB) transposon-based expression system has been developed as a powerful tool for increasing protein productivity. However, SB transposon system has fallen short of expectation in terms of the efficiency and stability of protein production, limiting its applicability to large-scale production of recombinant proteins. Here, we propose a novel strategy to increase the efficiency and stability of protein production, through modification of the traditional SB transposon vector. Adding a pair of inverted terminal repeats (ITRs) next to existing ITRs (i.e., double-ITRs) significantly increased the efficiency of transgene integration, resulting in high-yield and sustained protein production. Furthermore, double-ITRs responded more favorably to DNA methylation inhibitors in terms of protein yield, implying that using double-ITRs with DNA methylation inhibitors may be effective in increasing protein productivity. Taken together, our study introduces a new vector platform that is applicable to high-yield and sustained protein production, and will open new avenues in the field of biopharmaceuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Butler, M. and M. Spearman (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr. Opin. Biotechnol. 30: 107–112.

    Article  CAS  Google Scholar 

  2. Owczarek, B., A. Gerszberg, and K. Hnatuszko-Konka (2019) A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. Biomed Res. Int. 2019: 4216060.

    Article  CAS  Google Scholar 

  3. Izsvák, Z. and Z. Ivics (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol. Ther. 9: 147–156.

    Article  Google Scholar 

  4. Geurts, A. M., Y. Yang, K. J. Clark, G. Liu, Z. Cui, A. J. Dupuy, J. B. Bell, D. A. Largaespada, and P. B. Hackett (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol. Ther. 8: 108–117.

    Article  CAS  Google Scholar 

  5. Bire, S., D. Ley, S. Casteret, N. Mermod, Y. Bigot, and F. Rouleux-Bonnin (2013) Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. PLoS One 8: e82559.

    Article  Google Scholar 

  6. Scheuermann, B., T. Diem, Z. Ivics, and M. A. Andrade-Navarro (2019) Evolution-guided evaluation of the inverted terminal repeats of the synthetic transposon Sleeping Beauty. Sci. Rep. 9: 1171.

    Article  Google Scholar 

  7. Muñoz-López, M. and J. L. García-Pérez (2010) DNA transposons: nature and applications in genomics. Curr. Genomics. 11: 115–128.

    Article  Google Scholar 

  8. Amberger, M. and Z. Ivics (2020) Latest advances for the sleeping beauty transposon system: 23 years of insomnia but prettier than ever: refinement and recent innovations of the sleeping beauty transposon system enabling novel, nonviral genetic engineering applications. Bioessays. 42: e2000136.

    Article  Google Scholar 

  9. Ivics, Z., W. Garrels, L. Mátés, T. Y. Yau, S. Bashir, V. Zidek, V. Landa, A. Geurts, M. Pravenec, T. Rülicke, W. A. Kues, and Z. Izsvák (2014) Germline transgenesis in pigs by cytoplasmic microinjection of Sleeping Beauty transposons. Nat. Protoc. 9: 810–827.

    Article  CAS  Google Scholar 

  10. Ivics, Z., L. Hiripi, O. I. Hoffmann, L. Mátés, T. Y. Yau, S. Bashir, V. Zidek, V. Landa, A. Geurts, M. Pravenec, T. Rülicke, Z. Bösze, and Z. Izsvák (2014) Germline transgenesis in rabbits by pronuclear microinjection of Sleeping Beauty transposons. Nat. Protoc. 9: 794–809.

    Article  CAS  Google Scholar 

  11. Katter, K., A. M. Geurts, O. Hoffmann, L. Mátés, V. Landa, L. Hiripi, C. Moreno, J. Lazar, S. Bashir, V. Zidek, E. Popova, B. Jerchow, K. Becker, A. Devaraj, I. Walter, M. Grzybowksi, M. Corbett, A. R. Filho, M. R. Hodges, M. Bader, Z. Ivics, H. J. Jacob, M. Pravenec, Z. Bosze, T. Rülicke, and Z. Izsvák (2013) Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits. FASEB J. 27: 930–941.

    Article  CAS  Google Scholar 

  12. Narayanavari, S. A., S. S. Chilkunda, Z. Ivics, and Z. Izsvák (2017) Sleeping Beauty transposition: from biology to applications. Crit. Rev. Biochem. Mol. Biol. 52: 18–44.

    Article  CAS  Google Scholar 

  13. Miller, J. L. and P. A. Grant (2013) The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell. Biochem. 61: 289–317.

    Article  CAS  Google Scholar 

  14. Feschotte, C. and E. J. Pritham (2007) DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41: 331–368.

    Article  CAS  Google Scholar 

  15. Garrison, B. S., S. R. Yant, J. G. Mikkelsen, and M. A. Kay (2007) Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol. Cell. Biol. 27: 8824–8833.

    Article  CAS  Google Scholar 

  16. Balasubramanian, S., Y. Rajendra, L. Baldi, D. L. Hacker, and F. M. Wurm (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotcehnol. Bioeng. 113: 1234–1243.

    Article  CAS  Google Scholar 

  17. Hwang, S. Y., M. U. Kuk, J. W. Kim, Y. H. Lee, Y. S. Lee, H. E. Choy, S. C. Park, and J. T. Park (2020) ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion. 55: 54–63.

    Article  CAS  Google Scholar 

  18. Tharmalingam, T., H. Barkhordarian, N. Tejeda, K. Daris, S. Yaghmour, P. Yam, F. Lu, C. Goudar, T. Munro, and J. Stevens (2018) Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol. Prog. 34: 613–623.

    Article  Google Scholar 

  19. Yang, F., L. Zhang, J. Li, J. Huang, R. Wen, L. Ma, D. Zhou, and L. Li (2010) Trichostatin A and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. BMC Plant Biol. 10: 178.

    Article  Google Scholar 

  20. Moore, L. D., T. Le, and G. Fan (2013) DNA methylation and its basic function. Neuropsychopharmacology. 38: 23–38.

    Article  CAS  Google Scholar 

  21. Hackett, P. B., D. A. Largaespada, and L. J. N. Cooper (2010) A transposon and transposase system for human application. Mol. Ther. 18: 674–683.

    Article  CAS  Google Scholar 

  22. Cui, Z., A. M. Geurts, G. Liu, C. D. Kaufman, and P. B. Hackett (2002) Structure-function analysis of the inverted terminal repeats of the sleeping beauty transposon. J. Mol. Biol. 318: 1221–1235.

    Article  CAS  Google Scholar 

  23. Muñoz-Fernández, G., J.-F. Montero-Bullón, J. L. Revuelta, and A. Jiménez (2021) New promoters for metabolic engineering of Ashbya gossypii. J. Fungi (Basel). 7: 906.

    Article  Google Scholar 

  24. Panthu, B., T. Ohlmann, J. Perrier, U. Schlattner, P. Jalinot, B. Elena-Herrmann, and G. J. P. Rautureau (2018) Cell-free protein synthesis enhancement from real-time NMR metabolite kinetics: redirecting energy fluxes in hybrid RRL systems. ACS Synth. Biol. 7: 218–226.

    Article  CAS  Google Scholar 

  25. Lai, T., Y. Yang, and S. K. Ng (2013) Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel). 6: 579–603.

    Article  CAS  Google Scholar 

  26. Tschorn, N., K. Berg, and J. Stitz (2020) Transposon vector-mediated stable gene transfer for the accelerated establishment of recombinant mammalian cell pools allowing for high-yield production of biologics. Biotechnol. Lett. 42: 1103–1112.

    Article  CAS  Google Scholar 

  27. Huang, X., K. Haley, M. Wong, H. Guo, C. Lu, A. Wilber, and X. Zhou (2010) Unexpectedly high copy number of random integration but low frequency of persistent expression of the Sleeping Beauty transposase after trans delivery in primary human T cells. Hum. Gene Ther. 21: 1577–1590.

    Article  CAS  Google Scholar 

  28. Gibney, E. R. and C. M. Nolan (2010) Epigenetics and gene expression. Heredity (Edinb.) 105: 4–13.

    Article  CAS  Google Scholar 

  29. Jansz, N. (2019) DNA methylation dynamics at transposable elements in mammals. Essays Biochem. 63: 677–689.

    Article  CAS  Google Scholar 

  30. Troyanovsky, B., V. Bitko, V. Pastukh, B. Fouty, and V. Solodushko (2016) The functionality of minimal piggyBac transposons in mammalian cells. Mol. Ther. Nucleic Acids. 5: e369.

    Article  CAS  Google Scholar 

  31. Iida, A., A. Shimada, A. Shima, N. Takamatsu, H. Hori, K. Takeuchi, and A. Koga (2006) Targeted reduction of the DNA methylation level with 5-azacytidine promotes excision of the medaka fish Tol2 transposable element. Genet. Res. 87: 187–193.

    Article  CAS  Google Scholar 

  32. Robertson, K. D. (2002) DNA methylation and chromatin — unraveling the tangled web. Oncogene. 21: 5361–5379.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an Incheon National University research grant (2020-0070).

Author information

Authors and Affiliations

Authors

Contributions

YHL, HR, and JTP conceived of and designed the experiments. YHL, JYP, ESS, MUK, JJ, and HL performed the experiments. YHL analyzed the data. YHL, HR, and JTP wrote and edited the manuscript.

Corresponding authors

Correspondence to Hyungmin Roh or Joon Tae Park.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.H., Park, J.Y., Song, E.S. et al. Improvement of Sleeping Beauty Transposon System Enabling Efficient and Stable Protein Production. Biotechnol Bioproc E 27, 353–360 (2022). https://doi.org/10.1007/s12257-021-0231-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0231-x

Keywords

Navigation