Skip to main content
Log in

Bacterial Artificial Chromosome-based Protein Expression Platform Using the Tol2 Transposon System

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Conventional vector systems, including plasmid-based vectors, are mainly used in mammalian cells for the production of biopharmaceuticals. Plasmid-based vectors express transgene by the random integration of recombinant transgenes into the genome. Transgene expression is greatly influenced by the surrounding chromatin, and in most cases, expression is weak and tends to be suppressed over time. Therefore, a novel strategy is required to create clones that maintain increased transgene expression. In this study, we used a bacterial artificial chromosome (BAC) containing the Rosa26 locus, which allows constitutive and ubiquitous gene expression. Moreover, we improved the Rosa26 BAC-mediated expression system by incorporating the Tol2 transposon system with helper vector, resulting in improved efficiency of protein production and maintained productivity even in single-cell clones. Furthermore, the recombinant Rosa26 BAC was improved in terms of protein productivity by using helper mRNA instead of helper vector. Finally, establishment of an optimal molar ratio between the recombinant Rosa26 BAC and helper mRNA helped to achieve maximal protein productivity. Taken together, our results provide an effective strategy for improving BAC-based expression systems for biopharmaceutical production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghaderi, D., M. Zhang, N. Hurtado-Ziola, and A. Varki (2012) Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol. Genet. Eng. Rev. 28: 147–175.

    Article  CAS  PubMed  Google Scholar 

  2. Swiech, K., V. Picanço-Castro, and D. T. Covas (2012) Human cells: new platform for recombinant therapeutic protein production. Protein Expr. Purif. 84: 147–153.

    Article  CAS  PubMed  Google Scholar 

  3. Rita Costa, A., M. Elisa Rodrigues, M. Henriques, J. Azeredo, and R. Oliveira (2010) Guidelines to cell engineering for monoclonal antibody production. Eur. J. Pharm. Biopharm. 74: 127–138.

    Article  CAS  PubMed  Google Scholar 

  4. Lai, T., Y. Yang, and S. K. Ng (2013) Advances in Mammalian cell line development technologies for recombinant protein production. Pharmaceuticals (Basel) 6: 579–603.

    Article  CAS  Google Scholar 

  5. Canto, T. (2016) Transient expression systems in plants: potentialities and constraints. Adv. Exp. Med. Biol. 896: 287–301.

    Article  CAS  PubMed  Google Scholar 

  6. Liew, C. G., J. S. Draper, J. Walsh, H. Moore, and P. W. Andrews (2007) Transient and stable transgene expression in human embryonic stem cells. Stem Cells 25: 1521–1528. (Erratum published 2008, Stem Cells 26: 1094)

    Article  CAS  PubMed  Google Scholar 

  7. Zitzmann, J., C. Schreiber, J. Eichmann, R. O. Bilz, D. Salzig, T. Weidner, and P. Czermak (2018) Single-cell cloning enables the selection of more productive Drosophila melanogaster S2 cells for recombinant protein expression. Biotechnol. Rep. (Amst.) 19: e00272.

    Article  Google Scholar 

  8. Tihanyi, B. and L. Nyitray (2020) Recent advances in CHO cell line development for recombinant protein production. Drug Discov. Today Technol. 38: 25–34.

    Article  PubMed  Google Scholar 

  9. Giraldo, P. and L. Montoliu (2001) Size matters: use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 10: 83–103.

    Article  CAS  PubMed  Google Scholar 

  10. Wilber, A., J. L. Frandsen, J. L. Geurts, D. A. Largaespada, P. B. Hackett, and R. S. McIvor (2006) RNA as a source of transposase for Sleeping Beauty-mediated gene insertion and expression in somatic cells and tissues. Mol. Ther. 13: 625–630.

    Article  CAS  PubMed  Google Scholar 

  11. Bire, S., D. Ley, S. Casteret, N. Mermod, Y. Bigot, and F. Rouleux-Bonnin (2013) Optimization of the piggyBac transposon using mRNA and insulators: toward a more reliable gene delivery system. PLoS One. 8: e82559.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Stone, N. E., J. B. Fan, V. Willour, L. A. Pennacchio, J. A. Warrington, A. Hu, A. de la Chapelle, A. E. Lehesjoki, D. R. Cox, and R. M. Myers (1996) Construction of a 750-kb bacterial clone contig and restriction map in the region of human chromosome 21 containing the progressive myoclonus epilepsy gene. Genome Res. 6: 218–225.

    Article  CAS  PubMed  Google Scholar 

  13. Mader, A., B. Prewein, K. Zboray, E. Casanova, and R. Kunert (2013) Exploration of BAC versus plasmid expression vectors in recombinant CHO cells. Appl. Microbiol. Biotechnol. 97: 4049–4054.

    Article  CAS  PubMed  Google Scholar 

  14. Zambrowicz, B. P., A. Imamoto, S. Fiering, L. A. Herzenberg, W. G. Kerr, and P. Soriano (1997) Disruption of overlapping transcripts in the ROSA beta geo 26 gene trap strain leads to widespread expression of beta-galactosidase in mouse embryos and hematopoietic cells. Proc. Natl. Acad. Sci. U. S. A. 94: 3789–3794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Niwa, H., K. Yamamura, and J. Miyazaki (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene. 108: 193–199.

    Article  CAS  PubMed  Google Scholar 

  16. Sparwasser, T. and G. Eberl (2007) BAC to immunology-bacterial artificial chromosome-mediated transgenesis for targeting of immune cells. Immunology. 121: 308–313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blaas, L., M. Musteanu, B. Grabner, R. Eferl, A. Bauer, and E. Casanova (2012) The use of bacterial artificial chromosomes for recombinant protein production in mammalian cell lines. Methods Mol. Biol. 824: 581–593.

    Article  CAS  PubMed  Google Scholar 

  18. Blaas, L., M. Musteanu, R. Eferl, A. Bauer, and E. Casanova (2009) Bacterial artificial chromosomes improve recombinant protein production in mammalian cells. BMC Biotechnol. 9: 3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jessen, J. R., C. E. Willett, and S. Lin (1999) Artificial chromosome transgenesis reveals long-distance negative regulation of rag1 in zebrafish. Nat. Genet. 23: 15–16.

    Article  CAS  PubMed  Google Scholar 

  20. Alattia, J. R., M. Matasci, M. Dimitrov, L. Aeschbach, S. Balasubramanian, D. L. Hacker, F. M. Wurm, and P. C. Fraering (2013) Highly efficient production of the Alzheimer’s γ-secretase integral membrane protease complex by a multi-gene stable integration approach. Biotechnol. Bioeng. 110: 1995–2005.

    Article  CAS  PubMed  Google Scholar 

  21. Matasci, M., L. Baldi, D. L. Hacker, and F. M. Wurm (2011) The PiggyBac transposon enhances the frequency of CHO stable cell line generation and yields recombinant lines with superior productivity and stability. Biotechnol. Bioeng. 108: 2141–2150.

    Article  CAS  PubMed  Google Scholar 

  22. Balasubramanian, S., Y. Rajendra, L. Baldi, D. L. Hacker, and F. M. Wurm (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol. Bioeng. 113: 1234–1243.

    Article  CAS  PubMed  Google Scholar 

  23. Geurts, A. M., Y. Yang, K. J. Clark, G. Liu, Z. Cui, A. J. Dupuy, J. B. Bell, D. A. Largaespada, and P. B. Hackett (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol. Ther. 8: 108–117.

    Article  CAS  PubMed  Google Scholar 

  24. Balciunas, D., K. J. Wangensteen, A. Wilber, J. Bell, A. Geurts, S. Sivasubbu, X. Wang, P. B. Hackett, D. A. Largaespada, R. S. McIvor, and S. C. Ekker (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2: e169.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ding, S., X. Wu, G. Li, M. Han, Y. Zhuang, and T. Xu (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122: 473–483.

    Article  CAS  PubMed  Google Scholar 

  26. Igarashi, H., K. Ikeda, H. Onimaru, R. Kaneko, K. Koizumi, K. Beppu, K. Nishizawa, Y. Takahashi, F. Kato, K. Matsui, K. Kobayashi, Y. Yanagawa, S. I. Muramatsu, T. Ishizuka, and H. Yawo (2018) Targeted expression of step-function opsins in transgenic rats for optogenetic studies. Sci. Rep. 8: 5435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sharan, S. K., L. C. Thomason, S. G. Kuznetsov, and D. L. Court (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4: 206–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hwang, S. Y., M. U. Kuk, J. W. Kim, Y. H. Lee, Y. S. Lee, H. E. Choy, S. C. Park, and J. T. Park (2020) ATM mediated-p53 signaling pathway forms a novel axis for senescence control. Mitochondrion. 55: 54–63.

    Article  CAS  PubMed  Google Scholar 

  29. Soriano, P. (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat. Genet. 21: 70–71.

    Article  CAS  PubMed  Google Scholar 

  30. Damdindorj, L., S. Karnan, A. Ota, E. Hossain, Y. Konishi, Y. Hosokawa, and H. Konishi (2014) A comparative analysis of constitutive promoters located in adeno-associated viral vectors. PLoS One. 9: e106472.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Suster, M. L., G. Abe, A. Schouw, and K. Kawakami (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat. Protoc. 6: 1998–2021.

    Article  CAS  PubMed  Google Scholar 

  32. Izsvák, Z. and Z. Ivics (2004) Sleeping beauty transposition: biology and applications for molecular therapy. Mol. Ther. 9: 147–156.

    Article  PubMed  CAS  Google Scholar 

  33. Tharmalingam, T., H. Barkhordarian, N. Tejeda, K. Daris, S. Yaghmour, P. Yam, F. Lu, C. Goudar, T. Munro, and J. Stevens (2018) Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol. Prog. 34: 613–623.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Muñoz-López, M. and J. L. García-Pérez (2010) DNA transposons: nature and applications in genomics. Curr. Genomics 11: 115–128.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hackett, P. B. (2007) Integrating DNA vectors for gene therapy. Mol. Ther. 15: 10–12.

    Article  CAS  PubMed  Google Scholar 

  36. Tran, D. T. M., T. T. P. Phan, T. T. N. Doan, T. L. Tran, W. Schumann, and H. D. Nguyen (2020) Integrative expression vectors with Pgrac promoters for inducer-free overproduction of recombinant proteins in Bacillus subtilis. Biotechnol. Rep. (Amst.) 28: e00540.

    Article  Google Scholar 

  37. Mikiewicz, D., A. Plucienniczak, A. Bierczynska-Krzysik, A. Skowronek, and G. Wegrzyn (2019) Novel expression vectors based on the pIGDM1 plasmid. Mol. Biotechnol. 61: 763–773.

    Article  CAS  PubMed  Google Scholar 

  38. Muñoz-Fernández, G., J.-F. Montero-Bullón, J. L. Revuelta, and A. Jiménez (2021) New promoters for metabolic engineering of Ashbya gossypii. J. Fungi (Basel). 7: 906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Panthu, B., T. Ohlmann, J. Perrier, U. Schlattner, P. Jalinot, B. Elena-Herrmann, and G. J. P. Rautureau (2018) Cell-free protein synthesis enhancement from real-time NMR metabolite kinetics: redirecting energy fluxes in hybrid RRL systems. ACS Synth. Biol. 7: 218–226.

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X., K. Xu, Y. Ou, X. Xu, and H. Chen (2018) Development of a baculovirus vector carrying a small hairpin RNA for suppression of sf-caspase-1 expression and improvement of recombinant protein production. BMC Biotechnol. 18: 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Jäckel, C., M. S. Nogueira, N. Ehni, C. Kraus, J. Ranke, M. Dohmann, E. Noessner, and P. J. Nelson (2016) A vector platform for the rapid and efficient engineering of stable complex transgenes. Sci. Rep. 6: 34365.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Zhou, C., B. Ye, S. Cheng, L. Zhao, Y. Liu, J. Jiang, and X. Yan (2019) Promoter engineering enables overproduction of foreign proteins from a single copy expression cassette in Bacillus subtilis. Microb. Cell Fact. 18: 111.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Balasubramanian, S., F. M. Wurm, and D. L. Hacker (2016) Multigene expression in stable CHO cell pools generated with the piggyBac transposon system. Biotechnol. Prog. 32: 1308–1317.

    Article  CAS  PubMed  Google Scholar 

  44. Narayanavari, S. A., S. S. Chilkunda, Z. Ivics, and Z. Izsvák (2017) Sleeping Beauty transposition: from biology to applications. Crit. Rev. Biochem. Mol. Biol. 52: 18–44.

    Article  CAS  PubMed  Google Scholar 

  45. Lohe, A. R. and D. L. Hartl (1996) Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13: 549–555.

    Article  CAS  PubMed  Google Scholar 

  46. Wu, S. C. Y., Y. J. J. Meir, C. J. Coates, A. M. Handler, P. Pelczar, S. Moisyadi, and J. M. Kaminski (2006) piggyBac is a flexible and highly active transposon as compared to Sleeping Beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 103: 15008–15013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kawakami, K. and T. Noda (2004) Transposition of the Tol2 element, an Ac-like element from the Japanese medaka fish Oryzias latipes, in mouse embryonic stem cells. Genetics. 166: 895–899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by Research Assistance Program (2021) in the Incheon National University. This research was also supported by priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A0304195411).

Author information

Authors and Affiliations

Authors

Contributions

MUK, HWK, and JTP conceived of and designed the experiments. MUK, JYP, ESS, HL, YHL, and JJ performed the experiments. MUK analyzed the data. MUK, HWK, and JTP wrote and edited the manuscript.

Corresponding authors

Correspondence to Hyung Wook Kwon or Joon Tae Park.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuk, M.U., Park, J.Y., Song, E.S. et al. Bacterial Artificial Chromosome-based Protein Expression Platform Using the Tol2 Transposon System. Biotechnol Bioproc E 27, 344–352 (2022). https://doi.org/10.1007/s12257-021-0222-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0222-y

Keywords

Navigation