Skip to main content
Log in

MiR-1297 and MiR-26a-5p Inhibit Cell Progression of Keratinocytes in Cholesteatoma Depending on the Regulation of BMI1

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cholesteatoma is a pathologically benign but clinically destructive middle ear disease characterized by hyperproliferative keratinocytes. B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) has been reported to be upregulated in cholesteatoma tissues. This study aimed to explore the biological role and underlying mechanisms of BMI1 in the progression of cholesteatoma. The expression levels of microRNA (miR)-1297, miR-26a- 5p, and BMI1 in cholesteatoma tissues and cells were examined by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. Functional experiments were performed by CCK-8 assay for cell proliferation viability, 5-ethynyl-2'deoxyuridine (EdU) incorporation assay for DNA biosynthesis, colony formation assay for cloning forming ability analysis, transwell assay and wound healing assay for cell metastasis, flow cytometry for cell cycle distribution and cell apoptosis. The protein expression of apoptosis-associated proteins was investigated by western blot. Dual-luciferase reporter assay was conducted to verify the interaction between miR-1297 or miR-26a-5p and BMI1. BMI1 was highly expressed in cholesteatoma tumor tissues. Functional analyses showed that BMI1 knockdown could inhibit the proliferation, colony formation, migration, invasion, cell cycle progression and promoted the apoptosis of keratinocytes. Mechanically, BMI1 was a target of miR-1297 and miR-26a-5p. Moreover, the rescue experiments presented that BMI1 addition could abolish the suppressive effects of miR-1297 or miR-26a-5p overexpression on cell malignant behaviors in keratinocytes. BMI1 could exert an oncogenic role in the malignant development of cholesteatoma through serving as the targets of miR-1297 and miR-26a-5p, which might provide novel strategies for cholesteatoma treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sculerati, N. and C. D. Bluestone (1989) Pathogenesis of cholesteatoma. Otolaryngol. Clin. North. Am. 22: 859–868.

    Article  CAS  Google Scholar 

  2. Maniu, A., O. Harabagiu, M. Perde Schrepler, A. Cătană, B. Fănuţă, and C. A. Mogoantă (2014) Molecular biology of cholesteatoma. Rom. J. Morphol. Embryol. 55: 7–13.

    PubMed  Google Scholar 

  3. Lau, K., M. Stavrakas, M. Yardley, and J. Ray (2021) Lasers in cholesteatoma surgery: A systematic review. Ear Nose Throat J. 100: 94S–99S.

    Article  Google Scholar 

  4. Palva, T. (1990) The pathogenesis and treatment of cholesteatoma. Acta Otolaryngol. 109: 323–330.

    Article  CAS  Google Scholar 

  5. Kim, H. J., S. P. Tinling, and R. A. Chole (2002) Increased proliferation and migration of epithelium in advancing experimental cholesteatomas. Otol. Neurotol. 23: 840–844.

    Article  Google Scholar 

  6. Kim, H. J., S. P. Tinling, and R. A. Chole (2002) Expression patterns of cytokeratins in cholesteatomas: evidence of increased migration and proliferation. J. Korean Med. Sci. 17: 381–388.

    Article  CAS  Google Scholar 

  7. Mo, Y. Y. (2012) MicroRNA regulatory networks and human disease. Cell. Mol. Life Sci. 69: 3529–3531.

    Article  CAS  Google Scholar 

  8. Lu, T. X. and M. E. Rothenberg (2018) MicroRNA. J. Allergy Clin. Immunol. 141: 1202–1207.

    Article  CAS  Google Scholar 

  9. Di Leva, G., M. Garofalo, and C. M. Croce (2014) MicroRNAs in cancer. Annu. Rev. Pathol. 9: 287–314.

    Article  CAS  Google Scholar 

  10. Kontomanolis, E. N., A. Koukouli, G. Liberis, H. Stanulov, A. Achouhan, and A. Pagkalos (2016) MiRNAs: regulators of human disease. Eur. J. Gynaecol. Oncol. 37: 759–765.

    CAS  PubMed  Google Scholar 

  11. Mahmoudian-Sani, M. R., A. Mehri-Ghahfarrokhi, F. Ahmadinejad, M. Hashemzadeh-Chaleshtori, M. Saidijam, and M. S. Jami (2017) MicroRNAs: effective elements in ear-related diseases and hearing loss. Eur. Arch. Otorhinolaryngol. 274: 2373–2380.

    Article  Google Scholar 

  12. Xie, S., X. Liu, Z. Pan, X. Chen, A. Peng, T. Yin, J. Ren, and W. Liu (2018) Microarray analysis of differentially-expressed microRNAs in acquired middle ear cholesteatoma. Int. J. Med. Sci. 15: 1547–1554.

    Article  CAS  Google Scholar 

  13. Zhang, W., X. Chen, and Z. Qin (2015) MicroRNA let-7a suppresses the growth and invasion of cholesteatoma keratinocytes. Mol. Med. Rep. 11: 2097–2103.

    Article  CAS  Google Scholar 

  14. Li, N. and Z. B. Qin (2014) Inflammation-induced miR-802 promotes cell proliferation in cholesteatoma. Biotechnol. Lett. 36: 1753–1759.

    Article  CAS  Google Scholar 

  15. Yang, D., H. Q. Liu, Z. Yang, D. Fan, and Q. Z. Tang (2021) BMI1 in the heart: Novel functions beyond tumorigenesis. EBioMedicine. 63: 103193.

    Article  CAS  Google Scholar 

  16. Banerjee Mustafi, S., P. K. Chakraborty, S. K. D. Dwivedi, K. Ding, K. M. Moxley, P. Mukherjee, and R. Bhattacharya} (2017) BMI1, a new target of CK2alpha. Mol. Cancer. 16: 56.

    Article  Google Scholar 

  17. Zang, J., L. Hui, N. Yang, B. Yang, and X. Jiang (2018) Downregulation of MiR-203a disinhibits Bmi1 and promotes growth and proliferation of keratinocytes in cholesteatoma. Int. J. Med. Sci. 15: 447–455.

    Article  CAS  Google Scholar 

  18. Bhutta, M. F., I. G. Williamson, and H. H. Sudhoff (2011) Cholesteatoma. BMJ. 342: d1088.

    Article  Google Scholar 

  19. Ren, H., P. Du, Z. Ge, Y. Jin, D. Ding, X. Liu, and Q. Zou (2016) TWIST1 and BMI1 in cancer metastasis and chemoresistance. J. Cancer. 7: 1074–1080.

    Article  CAS  Google Scholar 

  20. Wu, C. Y., J. J. Hung, and K. J. Wu (2012) Linkage between Twist1 and Bmi1: molecular mechanism of cancer metastasis/stemness and clinical implications. Clin. Exp. Pharmacol. Physiol. 39: 668–373.

    Article  CAS  Google Scholar 

  21. Chen, D., L. Cheng, H. Cao, and W. Liu (2021) Role of microRNA-381 in bladder cancer growth and metastasis with the involvement of BMI1 and the Rho/ROCK axis. BMC Urol. 21: 5.

    Article  Google Scholar 

  22. Guo, J., N. Deng, Y. Xu, L. Li, D. Kuang, M. Li, X. Li, Z. Xu, M. Xiang, and C. Xu (2021) Bmi1 drives the formation and development of intrahepatic cholangiocarcinoma independent of Ink4A/Arf repression. Pharmacol. Res. 164: 105365.

    Article  CAS  Google Scholar 

  23. Lee, K., G. Adhikary, S. Balasubramanian, R. Gopalakrishnan, T. McCormick, G. P. Dimri, R. L. Eckert, and E. A. Rorke (2008) Expression of Bmi-1 in epidermis enhances cell survival by altering cell cycle regulatory protein expression and inhibiting apoptosis. J. Invest. Dermatol. 128: 9–17.

    Article  CAS  Google Scholar 

  24. Balasubramanian, S., G. Adhikary, and R. L. Eckert (2010) The Bmi-1 polycomb protein antagonizes the (-)-epigallocatechin-3- gallate-dependent suppression of skin cancer cell survival. Carcinogenesis. 31: 496–503.

    Article  CAS  Google Scholar 

  25. Lee, Y. S. and A. Dutta (2009) MicroRNAs in cancer. Annu. Rev. Pathol. 4: 199–227.

    Article  CAS  Google Scholar 

  26. Kabekkodu, S. P., V. Shukla, V. K. Varghese, J. D’ Souza, S. Chakrabarty, and K. Satyamoorthy (2018) Clustered miRNAs and their role in biological functions and diseases. Biol. Rev. Camb. Philos. Soc. 93: 1955–1986.

    Article  Google Scholar 

  27. Chen, X., X. Li, and Z. Qin (2016) MicroRNA-21 promotes the proliferation and invasion of cholesteatoma keratinocytes. Acta Otolaryngol. 136: 1261–1266.

    Article  CAS  Google Scholar 

  28. Wang, Y., X. Liu, L. Wang, Z. Zhang, Z. Li, and M. Li (2021) Circ_PGPEP1 serves as a sponge of miR-1297 to promote gastric cancer progression via regulating E2F3. Dig. Dis. Sci. 66: 4302–4313.

    Article  CAS  Google Scholar 

  29. Pan, X., H. Li, J. Tan, X. Weng, L. Zhou, Y. Weng, and X. Cao (2020) miR-1297 suppresses osteosarcoma proliferation and aerobic glycolysis by regulating PFKFB2. Onco. Targets Ther. 13: 11265–11275.

    Article  CAS  Google Scholar 

  30. Wang, Y., J. Xue, H. Kuang, X. Zhou, L. Liao, and F. Yin (2017) microRNA-1297 inhibits the growth and metastasis of colorectal cancer by suppressing cyclin D2 expression. DNA Cell Biol. 36: 991–999.

    Article  CAS  Google Scholar 

  31. Wang, J., J. Ni, D. Song, M. Ding, J. Huang, W. Li, and G. He (2020) The regulatory effect of has-circ-0001146/miR-26a-5p/ MNAT1 network on the proliferation and invasion of osteosarcoma. Biosci Rep. 40: BSR20201232.

    Article  CAS  Google Scholar 

  32. Zhang, X. M., J. Wang, Z. L. Liu, H. Liu, Y. F. Cheng, and T. Wang (2020) LINC00657/miR-26a-5p/CKS2 ceRNA network promotes the growth of esophageal cancer cells via the MDM2/ p53/Bcl2/Bax pathway. Biosci Rep. 40: BSR20200525.

    Article  CAS  Google Scholar 

  33. Lv, P., X. Qiu, Y. Gu, X. Yang, X. Xu, and Y. Yang (2019) Long non-coding RNA SNHG6 enhances cell proliferation, migration and invasion by regulating miR-26a-5p/MAPK6 in breast cancer. Biomed Pharmacother. 110: 294–301.

    Article  CAS  Google Scholar 

  34. Zhou, J., Y. Liu, Z. Ren, Y. Zhang, and M. Zhang (2017) Transarterial chemoembolization with gelatin sponge microparticles for barcelona clinic liver cancer Stage C and large hepatocellular carcinoma: Initial clinical experience. J. Cancer Res. Ther. 13: 767–772.

    Article  CAS  Google Scholar 

  35. Chole, R. A., R. M. Hughes, and B. T. Faddis (2001) Keratin particle-induced osteolysis: a mouse model of inflammatory bone remodeling related to cholesteatoma. J. Assoc. Res. Otolaryngol. 2: 65–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

None

Funding

There is no funding to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Lou.

Ethics declarations

All participates had signed informed consents prior to surgery and this research was proceeded with the permission of the Ethics Committee of The First Affiliated Hospital of Zhengzhou University.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclosure of Interest

The authors declare that they have no conflicts of interest.

Data Availability Statements

Data analyzed for this study will be available on a reasonable request.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Ye, F., Hao, S. et al. MiR-1297 and MiR-26a-5p Inhibit Cell Progression of Keratinocytes in Cholesteatoma Depending on the Regulation of BMI1. Biotechnol Bioproc E 27, 79–88 (2022). https://doi.org/10.1007/s12257-021-0178-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0178-y

Keywords

Navigation