Skip to main content
Log in

Single Cell Analysis of Microalgae and Associated Bacteria Flora by Using Flow Cytometry

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

This article has been updated

Abstract

Microalgae are usually cultivated in mixed cultures with associated bacteria flora. Despite bacteria contaminants can strongly influence microalgal growth, they are rarely monitored, mainly because standardized and quick methods are missing. The aim of this study was to develop a quick flow cytometric method to quantify coenobia-forming microalgae (Tetradesmus obliquus) and associated bacteria. Staining conditions and sonication pretreatment were optimized to obtain the most accurate microalgal and bacterial cell counting. To pre-treat microalgae before counting, pulsed sonication (ton/toff = 30/60) was better than continuous sonication since it allows obtaining 100% single cells by minimizing cell lysis. On the contrary, sonication was not required for bacteria, because they were mainly found as single cells and only a relevant cell lysis was obtained when sonication was applied. To analyze samples as those tested in this study, bacteria should be analyzed directly after fixation and DNA staining, without sonication (duration of analysis: 90 min). Instead, sonication was mandatory for microalgae, while fixation and DNA staining could be avoided (duration of analysis: 30 min). Future studies should investigate the effect of the biological variability, that seems to be the most relevant factor affecting the accuracy and reproducibility of the flow cytometric analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 22 January 2021

    In the original upload, the revised date is written as 11 April 2011, It should be 2021.

References

  1. Di Caprio, F., P. Altimari, and F. Pagnanelli (2020) New strategies enhancing feasibility of microalgal cultivations. pp. 287–316. In: A. Basile, G. Centi, M. De Falco, and G. Iaquaniello (eds.). Studies in Surface Science and Catalysis. Elsevier Inc., Amsterdam, Netherlands.

    Google Scholar 

  2. Rammuni, M. N., T. U. Ariyadasa, P. H. V. Nimarshana, and P. A. Attalage (2019) Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chem. 277: 128–134.

    Article  CAS  Google Scholar 

  3. Ruiz, J., G. Olivieri, J. de Vree, R. Bosma, P. Willems, J. Hans Reith, M. H. M. Eppinik, D. M. M. Kleinegris, R. H. Wijffels, and M. J. Barbosa (2016) Towards industrial products from microalgae. Energy Environ. Sci. 9: 3036–3043.

    Article  Google Scholar 

  4. Lutzu, G. A., A. Ciurli, C. Chiellini, F. Di Caprio, A. Concas, and N. T. Dunford (2021) Latest developments in wastewater treatment and biopolymer production by microalgae. J. Environ. Chem. Eng. 9: 104926.

    Article  CAS  Google Scholar 

  5. Arashiro, L. T., N. Montero, I. Ferrer, F. G. Acien, C. Gomez, and M. Garfi (2018) Life cycle assessment of high rate algal ponds for wastewater treatment and resource recovery. Sci. Total Environ. 622-623: 1118–1130.

    Article  CAS  Google Scholar 

  6. Wu, Y. H., H. Y. Hu, Y. Yu, T. Y. Zhang, S. F. Zhu, L. L. Zhuang, X. Zhang, and Y. Lu (2014) Microalgal species for sustainable biomass/lipid production using wastewater as resource: a review. Renew. Sustain. Energy Rev. 33: 675–688.

    Article  CAS  Google Scholar 

  7. Shurin, J. B., R. L. Abbott, M. S. Deal, G. T. Kwan, E. Litchman, R. C. McBride, S. Mandal, and V. H. Smith (2013) Industrial strength ecology: Trade-offs and opportunities in algal biofuel production. Ecol. Lett. 16: 1393–1404.

    Article  Google Scholar 

  8. Croft, M. T., A. D. Lawrence, E. Raux-Deery, M. J. Warren, and A. G. Smith (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 438: 90–93.

    Article  CAS  Google Scholar 

  9. Di Caprio, F. (2020) Methods to quantify biological contaminants in microalgae cultures. Algal Res. 49: 101943.

    Article  Google Scholar 

  10. Molina, D., J. C. de Carvalho, A. I. M. Junior, C. Faulds, E. Bertrand, and C. R. Soccol (2019) Biological contamination and its chemical control in microalgal mass cultures. Appl. Microbiol. Biotechnol. 103: 9345–9358.

    Article  CAS  Google Scholar 

  11. Ramanan, R., B. H. Kim, D. H. Cho, H. M. Oh, and E. S. Kim (2016) Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol. Adv. 34: 14–29.

    Article  CAS  Google Scholar 

  12. Hammes, F., T. Broger, H. U. Weilenmann, M. Vital, J. Helbing, U. Bosshart, P. Huber, R. P. Odermatt, and B. Sonnleitner (2012) Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry A. 81: 508–516.

    Article  Google Scholar 

  13. Safford, H. R. and H. N. Bischel (2019) Flow cytometry applications in water treatment, distribution, and reuse: A review. Water Res. 151: 110–133.

    Article  CAS  Google Scholar 

  14. Zachleder, V., K. Biova, and M. Vitova (2016) The cell cycle of microalgae. pp. 3–46. In: M. A. Borowitzka, J. Beardall, and J. A. Raven (eds.). The Physiology of Microalgae. Springer, Cham, Switzerland.

    Chapter  Google Scholar 

  15. Foladori, P., S. Petrini, L. Bruni, and G. Andreottola (2020) Bacteria and photosynthetic cells in a photobioreactor treating real municipal wastewater: Analysis and quantification using flow cytometry. Algal Res. 50: 101969.

    Article  Google Scholar 

  16. Di Caprio, F., F. Pagnanelli, R. H. Wijffels, and D. Van der Veen (2018) Quantification of Tetradesmus obliquus (Chlorophyceae) cell size and lipid content heterogeneity at single-cell level. J. Phycol. 54: 187–197.

    Article  CAS  Google Scholar 

  17. Kurokawa, M., P. M. King, X. Wu, E. M. Joyce, T. J. Mason, and K. Yamamoto (2016) Effect of sonication frequency on the disruption of algae. Ultrason. Sonochem. 31: 157–162.

    Article  CAS  Google Scholar 

  18. Di Caprio, F., P. Altimari, G. Iaquaniello, L. Toro, and F. Pagnanelli (2018) T. obliquus mixotrophic cultivation in treated and untreated olive mill wastewater. Chem. Eng. Trans. 64: 625–630.

    Google Scholar 

  19. Peniuk, G. T., P. J. Schnurr, and D. G. Allen (2016) Identification and quantification of suspended algae and bacteria populations using flow cytometry: applications for algae biofuel and biochemical growth systems. J. Appl. Phycol. 28: 95–104.

    Article  CAS  Google Scholar 

  20. Wu, Z., L. Song, and R. Li (2008) Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus. Hydrobiologia. 596: 47–55.

    Article  Google Scholar 

  21. Nitsos, C., R. Filali, B. Taidi, and J. Lemaire (2020) Current and novel approaches to downstream processing of microalgae: A review. Biotechnol. Adv. 45: 107650.

    Article  CAS  Google Scholar 

  22. Martinez-Guerra, E. and V. G. Gude (2015) Continuous and pulse sonication effects on transesterification of used vegetable oil. Energy Convers. Manag. 96: 268–276.

    Article  CAS  Google Scholar 

  23. Chia, S. R., K. W. Chew, H. F. M. Zaid, D. T. Chu, Y. Tao, and P. L. Show (2019) Microalgal protein extraction from Chlorella vulgaris FSP-E using triphasic partitioning technique with sonication. Front. Bioeng. Biotechnol. 7: 396.

    Article  Google Scholar 

  24. Leon-Saiki, G. M., I. M. Remmers, D. E. Martens, P. P. Lamers, R. H. Wijffels, and D. van der Veen (2017) The role of starch as transient energy buffer in synchronized microalgal growth in Acutodesmus obliquus. Algal Res. 25: 160–167.

    Article  Google Scholar 

  25. Patel, A., R. T. Noble, J. A. Steele, M. S. Schwalbach, I. Hewson, and J. A. Fuhrman (2007) Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescence microscopy with SYBR Green I. Nat. Protoc. 2: 269–276.

    Article  CAS  Google Scholar 

  26. Baldock, D., G. Nebe-Von-Caron, R. Bongaerts, and A. Nocker (2013) Effect of acidic pH on flow cytometric detection of bacteria stained with SYBR Green I and their distinction from background. Methods Appl. Fluoresc. 1: 045001.

    Article  CAS  Google Scholar 

  27. Thompson, H. F., S. Summers, R. Yuecel, and T. Gutierrez (2020) Hydrocarbon-degrading bacteria found tightly associated with the 50-70 μm cell-size population of eukaryotic phytoplankton in surface waters of a northeast atlantic region. Microorganisms. 8: 1955.

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Di Caprio.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflicts of Interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Caprio, F., Posani, S., Altimari, P. et al. Single Cell Analysis of Microalgae and Associated Bacteria Flora by Using Flow Cytometry. Biotechnol Bioproc E 26, 898–909 (2021). https://doi.org/10.1007/s12257-021-0054-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0054-9

Keywords

Navigation