Skip to main content
Log in

Efficient Immobilization of Enzymes on Amino Functionalized MIL-125-NH2 Metal Organic Framework

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

As a series of metal organic framework (MOFs), materials of institute lavoisier frameworks (MILs) are expected to be excellent supports for enzyme immobilization due to their good water-stability and acid tolerance. However, enzyme loading on MIL-125-NH2 is very low due to small pore size and few amino groups on the surface of the MIL-125-NH2. In this work, catalase (CAT) was immobilized on the MIL-125-NH2 and amino functionalized MIL-125-NH2 by adsorption (CAT@MIL-125-NH2) and covalent binding (CAT@Amino MIL-125-NH2), respectively. Compared with the CAT@MIL-125-NH2 and free CAT, the CAT@Amino MIL-125-NH2 displayed high activity recovery, good pH stability, stability against denaturants, and thermostability. Furthermore, activity recovery of CAT@Amino MIL-125-NH2 was 56% higher than CAT@MIL-125-NH2. The CAT@Amino MIL-125-NH2 still retained 50% residual activity for 14 days at room temperature, whereas free CAT lost activity after storage for 1 day at the same storage conditions. Furthermore, the CAT@Amino MIL-125-NH2 maintained 62% of its initial activity after 4 consecutive uses, showing good reusability. The results showed that the amino functionalized MIL-125-NH2 is an excellent carrier of enzyme immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Knowles, J. R. (1991) Enzyme catalysis: not different, just better. Nature. 350: 121–124.

    Article  CAS  PubMed  Google Scholar 

  2. Cantone, S., V. Ferrario, L. Corici, C. Ebert, D. Fattor, P. Spizzo, and L. Gardossi (2013) Efficient immobilisation of industrial biocatalysts: criteria and constraints for the selection of organic polymeric carriers and immobilisation methods. Chem. Soc. Rev. 42: 6262–6276.

    Article  CAS  PubMed  Google Scholar 

  3. Franssen, M. C. R., P. Steunenberg, E. L. Scott, H. Zuilhof, and J. P. M. Sanders (2013) Immobilised enzymes in biorenewables production. Chem. Soc. Rev. 42: 6491–6533.

    Article  CAS  PubMed  Google Scholar 

  4. Cui, J. and S. Jia (2015) Optimization protocols and improved strategies of cross-linked enzyme aggregates technology: current development and future challenges. Crit. Rev. Biotechnol. 35: 15–28.

    Article  CAS  PubMed  Google Scholar 

  5. Rodrigues, R. C., C. Ortiz, Á. Berenguer-Murcia, R. Torres, and R. Fernández-Lafuente (2013) Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42: 6290–6307.

    Article  CAS  PubMed  Google Scholar 

  6. Adlercreutz, P. (2013) Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 42: 6406–6436.

    Article  CAS  PubMed  Google Scholar 

  7. DiCosimo, R., J. McAuliffe, A. J. Poulose, and G. Bohlmann (2013) Industrial use of immobilized enzymes. Chem. Soc. Rev. 42: 6437–6474.

    Article  CAS  PubMed  Google Scholar 

  8. Hult, K. and P. Berglund (2007) Enzyme promiscuity: mechanism and applications. Trends Biotechnol. 25: 231–238.

    Article  CAS  PubMed  Google Scholar 

  9. Verma, M. L., M. Puri, and C. J. Barrow (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit. Rev. Biotechnol. 36: 108–119.

    Article  CAS  PubMed  Google Scholar 

  10. Iyer, P. V. and L. Ananthanarayan (2008) Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochem. 43: 1019–1032.

    Article  CAS  Google Scholar 

  11. Fernandez-Lafuente, R. (2009) Stabilization of multimeric enzymes: Strategies to prevent subunit dissociation. Enzyme Microb. Technol. 45: 405–408.

    Article  CAS  Google Scholar 

  12. Mateo, C., J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan, and R. Fernandez-Lafuente (2007) Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 40: 1451–1463.

    Article  CAS  Google Scholar 

  13. Hernandez, K. and R. Fernandez-Lafuente (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme Microb. Technol. 48: 107–122.

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Galan, C., Á. Berenguer-Murcia, R. Fernandez-Lafuente, and R. C. Rodrigues (2011) Potential of different enzyme immobilization strategies to improve enzyme performance. Adv. Synth. Catal. 353: 2885–2904.

    Article  CAS  Google Scholar 

  15. Fernandez-Lopez, L., S. G. Pedrero, N. Lopez-Carrobles, B. C. Gorines, J. J. Virgen-Ortíz, and R. Fernandez-Lafuente (2017) Effect of protein load on stability of immobilized enzymes. Enzyme Microb. Technol. 98: 18–25.

    Article  CAS  PubMed  Google Scholar 

  16. Hwang, E. T. and M. B. Gu (2013) Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 13: 49–61.

    Article  CAS  Google Scholar 

  17. Barbosa, O., C. Ortiz, Á. Berenguer-Murcia, R. Torres, R. C. Rodrigues, and R. Fernandez-Lafuente (2015) Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnol. Adv. 33: 435–456.

    Article  CAS  PubMed  Google Scholar 

  18. Sheldon, R. A. and S. van Pelt (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem. Soc. Rev. 42: 6223–6235.

    Article  CAS  PubMed  Google Scholar 

  19. Barbosa, O., R. Torres, C. Ortiz, A. Berenguer-Murcia, R. C. Rodrigues, and R. Fernandez-Lafuente (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules. 14: 2433–2462.

    Article  CAS  PubMed  Google Scholar 

  20. Mohamad, N. R., N. H. C. Marzuki, N. A. Buang, F. Huyop, and R. A. Wahab (2015) An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 29: 205–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lian, X., Y. Fang, E. Joseph, Q. Wang, J. Li, S. Banerjee, C. Lollar, X. Wang, and H. C. Zhou (2017) Enzyme-MOF (metalorganic framework) composites. Chem. Soc. Rev. 46: 3386–3401.

    Article  CAS  PubMed  Google Scholar 

  22. Sheldon, R. A. (2011) Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Appl. Microbiol. Biotechnol. 92: 467–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang, M., W. Qi, R. Su, and Z. He (2015) Advances in carrier-bound and carrier-free immobilized nanobiocatalysts. Chem. Eng. Sci. 135: 21–32.

    Article  CAS  Google Scholar 

  24. Cui, J., S. Ren, B. Sun, and S. Jia (2018) Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: current development and future challenges. Coord. Chem. Rev. 370: 22–41.

    Article  CAS  Google Scholar 

  25. Cui, J., Y. Zhao, Y. Feng, T. Lin, C. Zhong, Z. Tan, and S. Jia (2017) Encapsulation of spherical cross-linked phenylalanine ammonia lyase aggregates in mesoporous biosilica. J. Agric. Food Chem. 65: 618–625.

    Article  CAS  PubMed  Google Scholar 

  26. Wang, M., C. Jia, W. Qi, Q. Yu, X. Peng, R. Su, and Z. He (2011) Porous-CLEAs of papain: application to enzymatic hydrolysis of macromolecules. Bioresour. Technol. 102: 3541–3545.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar, V. V., M. P. Prem Kumar, K. V. Thiruvenkadaravi, P. Baskaralingam, P. Senthil Kumar, and S. Sivanesan (2012) Preparation and characterization of porous cross linked laccase aggregates for the decolorization of triphenyl methane and reactive dyes. Bioresour. Technol. 119: 28–34.

    Article  Google Scholar 

  28. Lopez-Gallego, F., T. Montes, M. Fuentes, N. Alonso, V. Grazu, L. Betancor, J. M. Guisán, and R. Fernández-Lafuente (2005) Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. J. Biotechnol. 116: 1–10.

    Article  CAS  PubMed  Google Scholar 

  29. Ansari, S. A. and Q. Husain (2012) Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol. Adv. 30: 512–523.

    Article  CAS  PubMed  Google Scholar 

  30. Kim, J., J. W. Grate, and P. Wang (2008) Nanobiocatalysis and its potential applications. Trends Biotechnol. 26: 639–646.

    Article  CAS  PubMed  Google Scholar 

  31. Deng, H., C. J. Doonan, H. Furukawa, R. B. Ferreira, J. Towne, C. B. Knobler, B. Wang, and O. M. Yaghi (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science. 327: 846–850.

    Article  CAS  PubMed  Google Scholar 

  32. Cao, S. L., D. M. Yue, X. H. Li, T. J. Smith, N. Li, M. H. Zong, H. Wu, Y. Z. Ma, and W. Y. Lou (2016) Novel nano-/micro-biocatalyst: soybean epoxide hydrolase immobilized on UiO-66-NH2 MOF for efficient biosynthesis of enantiopure (R)-1, 2-octanediol in deep eutectic solvents. ACS Sustainable Chem. Eng. 4: 3586–3595.

    Article  CAS  Google Scholar 

  33. Sun, B., M. Bilal, S. Jia, Y. Jiang, and J. Cui (2019) Design and bio-applications of biological metal-organic frameworks. Korean J. Chem. Eng. 36: 1949–1964.

    Article  CAS  Google Scholar 

  34. Hassanzadeh Fard, Z., N. E. Wong, C. D. Malliakas, P. Ramaswamy, J. M. Taylao, K. Otsubo, and G. K. H. Shimizu (2018) Superprotonic phase change to a robust phosphonate metal-organic framework. Chem. Mater. 30: 314–318.

    Article  CAS  Google Scholar 

  35. Gu, Z., L. Chen, X. Li, L. Chen, Y. Zhang, and C. Duan (2019) NH2-MIL-125(Ti)-derived porous cages of titanium oxides to support Pt-Co alloys for chemoselective hydrogenation reactions. Chem. Sci. 10: 2111–2117.

    Article  CAS  PubMed  Google Scholar 

  36. Rengaraj, A., P. Puthiaraj, N. S. Heo, H. Lee, S. K. Hwang, S. Kwon, W. S. Ahn, and Y. S. Huh (2017) Porous NH2-MIL-125 as an efficient nano-platform for drug delivery, imaging, and ROS therapy utilized Low-Intensity Visible light exposure system. Colloids Surf. B. Biointerfaces. 160: 1–10.

    Article  CAS  PubMed  Google Scholar 

  37. Kim, S. N., J. Kim, H. Y. Kim, H. Y. Cho, and W. S. Ahn (2013) Adsorption/catalytic properties of MIL-125 and NH2-MIL-125. Cataly Today. 204: 85–93.

    Article  CAS  Google Scholar 

  38. Guo, F., J. H. Guo, P. Wang, Y. S. Kang, Y. Liu, J. Zhao, and W. Y. Sun (2019) Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci. 10: 4834–4838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jeremias, F., V. Lozan, S. K. Henninger, and C. Janiak (2013) Programming MOFs for water sorption: amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications. Dalton Trans. 42: 15967–15973.

    Article  CAS  PubMed  Google Scholar 

  40. Feng, Y., L. Zhong, Y. Hou, S. Jia, and J. Cui (2019) Acid-resistant enzyme@MOF nanocomposites with mesoporous silica shells for enzymatic applications in acidic environments. J. Biotechnol. 306: 54–61.

    Article  CAS  PubMed  Google Scholar 

  41. Kim, H. Y., S. N. Kim, J. Kim, and W. S. Ahn (2013) Liquid phase adsorption of selected chloroaromatic compounds over metal organic frameworks. Mater. Res. Bull. 48: 4499–4505.

    Article  CAS  Google Scholar 

  42. Tüzmen, N., T. Kalburcu, and A. Denizli (2012) Immobilization of catalase via adsorption onto metal-chelated affinity cryogels. Process Biochem. 47: 26–33.

    Article  Google Scholar 

  43. Cui, J., Y. Feng, and S. Jia (2018) Silica encapsulated catalase@metal-organic framework composite: a highly stable and recyclable biocatalyst. Chem. Eng. J. 351: 506–514.

    Article  CAS  Google Scholar 

  44. Chen, C., W. Sun, H. Lv, H. Li, Y. Wang, and P. Wang (2018) Spacer arm-facilitated tethering of laccase on magnetic polydopamine nanoparticles for efficient biocatalytic water treatment. Chem. Eng. J. 350: 949–959.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Science and Technology Program of Tianjin, China (project no. 20ZYJDJC00080), the Key Projects of Tianjin Natural Science Foundation, China (project no. 19JCZDJC38100), Key R & D projects in Zhongning County, China (project no. 2021YBYF0808), project of Guangxi Key Research and Development program, China (project no. GuikeAB21238005), and project of Key Research and Development of Shandong province, China (project no. 2021CXGC010509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daoyu Zhu or Jiandong Cui.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Liu, Y., Li, J. et al. Efficient Immobilization of Enzymes on Amino Functionalized MIL-125-NH2 Metal Organic Framework. Biotechnol Bioproc E 27, 135–144 (2022). https://doi.org/10.1007/s12257-020-0393-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0393-y

Keywords

Navigation