Skip to main content

Advertisement

Log in

A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications

  • Invited Review
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

For last two decades, the demand for precisely engineered three-dimensional structures has increased continuously for the developments of biomaterials. With the recent advances in micro- and nano-fabrication techniques, various devices with complex surface geometries have been devised and produced in the pharmaceutical and medical fields for various biomedical applications including drug delivery and biosensors. These advanced biomaterials have been designed to mimic the natural environments of tissues more closely and to enhance the performance for their corresponding biomedical applications. One of the important aspects in the rational design of biomaterials is how to configure the surface of the biomedical devices for better control of the chemical and physical properties of the bioactive surfaces without compromising their bulk characteristics. In this viewpoint, it of critical importance to secure a versatile method to modify the surface of various biomedical devices. Recently, a vapor phase method, termed initiated chemical vapor deposition (iCVD) has emerged as damage-free method highly beneficial for the conformal deposition of various functional polymer films onto many kinds of micro- and nano-structured surfaces without restrictions on the substrate material or geometry, which is not trivial to achieve by conventional solution-based surface functionalization methods. With proper structural design, the functional polymer thin film via iCVD can impart required functionality to the biomaterial surfaces while maintaining the fine structure thereon. We believe the iCVD technique can be not only a valuable approach towards fundamental cell-material studies, but also of great importance as a platform technology to extend to other prospective biomaterial designs and material interface modifications for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Melchels, F. P. W., J. Feijen, and D. W. Grijpma (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials. 31: 6121–6130.

    Article  CAS  PubMed  Google Scholar 

  2. Mendes, P. M. (2008) Stimuli-responsive surfaces for bio-applications. Chem. Soc. Rev. 37: 2512–2529.

    Article  CAS  PubMed  Google Scholar 

  3. Patterson, J., M. M. Martino, and J. A. Hubbell (2010) Biomimetic materials in tissue engineering. Mater. Today. 13: 14–22.

    Article  CAS  Google Scholar 

  4. Lutolf, M. P. and J. A. Hubbell (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23: 47–55.

    Article  CAS  PubMed  Google Scholar 

  5. Rossini, P., P. Colpo, G. Ceccone, K. D. Jandt, and F. Rossi (2003) Surfaces engineering of polymeric films for biomedical applications. Mater. Sci. Eng. C. 23: 353–358.

    Article  Google Scholar 

  6. Chu, P. K., J. Y. Chen, L. P. Wang, and N. Huang (2002) Plasma-surface modification of biomaterials. Mater. Sci. Eng. R. Rep. 36: 143–206.

    Article  Google Scholar 

  7. Roach, P., D. Eglin, K. Rohde, and C. C. Perry (2007) Modern biomaterials: a review — bulk properties and implications of surface modifications. J. Mater. Sci. Mater. Med. 18: 1263–1277.

    Article  CAS  PubMed  Google Scholar 

  8. Asri, R. I. M., W. S. W. Harun, M. Samykano, N. A. C. Lah, S. A. C. Ghani, F. Tarlochan, and M. R. Raza (2017) Corrosion and surface modification on biocompatible metals: A review. Mater. Sci. Eng. C. Mater. Biol. Appl. 77: 1261–1274.

    Article  CAS  PubMed  Google Scholar 

  9. Campoccia, D., L. Montanaro, and C. R. Arciola (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials. 34: 8533–8554.

    Article  CAS  PubMed  Google Scholar 

  10. Lim, J. Y. and H. J. Donahue (2007) Cell sensing and response to micro- and nanostructured surfaces produced by chemical and topographic patterning. Tissue Eng. 13: 1879–1891.

    Article  CAS  PubMed  Google Scholar 

  11. Bettinger, C. J., R. Langer, and J. T. Borenstein (2009) Engineering substrate topography at the micro- and nanoscale to control cell function. Angew. Chem. Int. Ed. Engl. 48: 5406–5415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nikkhah, M., F. Edalat, S. Manoucheri, and A. Khademhosseini (2012) Engineering microscale topographies to control the cellsubstrate interface. Biomaterials. 33: 5230–5246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McMurray, R. J., N. Gadegaard, P. M. Tsimbouri, K. V. Burgess, L. E. McNamara, R. Tare, K. Murawski, E. Kingham, R. O. C. Oreffo, and M. J. Dalby (2011) Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat. Mater. 10: 637–644.

    Article  CAS  PubMed  Google Scholar 

  14. Kilian, K. A., B. Bugarija, B. T. Lahn, and M. Mrksich (2010) Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl. Acad. Sci. USA. 107: 4872–4877.

    Article  CAS  PubMed  Google Scholar 

  15. Bose, S., S. F. Robertson, and A. Bandyopadhyay (2018) Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 66: 6–22.

    Article  CAS  PubMed  Google Scholar 

  16. Kim, Y. S., N. H. A. Raston, and M. B. Gu (2016) Aptamer-based nanobiosensors. Biosens. Bioelectron. 76: 2–19.

    Article  PubMed  Google Scholar 

  17. Sandhyarani, N. (2019) Surface modification methods for electrochemical biosensors. pp. 45–75. In: A. A. Ensafi (ed.). Electrochemical Biosensors. Elsevier, Amsterdam, Netherlands.

    Chapter  Google Scholar 

  18. Mosbach, K. and O. Ramstrom (1996) The emerging technique of molecular imprinting and its future impact on biotechnology. Nat. Biotechnol. 14: 163–170.

    Article  CAS  Google Scholar 

  19. Place, E. S., J. H. George, C. K. Williams, and M. M. Stevens (2009) Synthetic polymer scaffolds for tissue engineering. Chem. Soc. Rev. 38: 1139–1151.

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y., J. Rodrigues, and H. Tomas (2012) Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41: 2193–2221.

    Article  CAS  PubMed  Google Scholar 

  21. Guo, B., L. Glavas, and A. C. Albertsson (2013) Biodegradable and electrically conducting polymers for biomedical applications. Prog. Polym. Sci. 38: 1263–1286.

    Article  CAS  Google Scholar 

  22. Tian, H., Z. Tang, X. Zhuang, X. Chen, and X. Jing (2012) Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37: 237–280.

    Article  CAS  Google Scholar 

  23. O’Brien, F. J. (2011) Biomaterials & scaffolds for tissue engineering. Mater. Today. 14: 88–95.

    Article  Google Scholar 

  24. Song, H. G., R. T. Rumma, C. K. Ozaki, E. R. Edelman, and C. S. Chen (2018) Vascular tissue engineering: progress, challenges, and clinical promise. Cell Stem Cell. 22: 340–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sensharma, P., G. Madhumathi, R. D. Jayant, and A. K. Jaiswal (2017) Biomaterials and cells for neural tissue engineering: Current choices. Mater. Sci. Eng. C. Mater. Biol. Appl. 77: 1302–1315.

    Article  CAS  PubMed  Google Scholar 

  26. Bose, S., M. Roy, and A. Bandyopadhyay (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 30: 546–554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Khang, D., J. Choi, Y. M. Im, Y. J. Kim, J. H. Jang, S. S. Kang, T. H. Nam, J. Song, and J. W. Park (2012) Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. Biomaterials. 33: 5997–6007.

    Article  CAS  PubMed  Google Scholar 

  28. Variola, F., J. B. Brunski, G. Orsini, P. Tambasco de Oliveira, R. Wazen, and A. Nanci (2011) Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale. 3: 335–353.

    Article  CAS  PubMed  Google Scholar 

  29. Dalby, M. J., N. Gadegaard, R. Tare, A. Andar, M. O. Riehle, P. Herzyk, C. D. W. Wilkinson, and R. O. Oreffo (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat. Mater. 6: 997–1003.

    Article  CAS  PubMed  Google Scholar 

  30. Downing, T. L., J. Soto, C. Morez, T. Houssin, A. Fritz, F. Yuan, J. Chu, S. Patel, D. V. Schaffer, and S. Li (2013) Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12: 1154–1162.

    Article  CAS  PubMed  Google Scholar 

  31. Cole, M. A., N. H. Voelcker, H. Thissen, and H. J. Griesser (2009) Stimuli-responsive interfaces and systems for the control of protein-surface and cell-surface interactions. Biomaterials. 30: 1827–1850.

    Article  CAS  PubMed  Google Scholar 

  32. Arima, Y. and H. Iwata (2007) Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. Biomaterials. 28: 3074–3082.

    Article  CAS  PubMed  Google Scholar 

  33. Ayala, R., C. Zhang, D. Yang, Y. Hwang, A. Aung, S. S. Shroff, F. T. Arce, R. Lal, G. Arya, and S. Varghese (2011) Engineering the cell-material interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials. 32: 3700–3711.

    Article  CAS  PubMed  Google Scholar 

  34. Keselowsky, B. G., D. M. Collard, and A. J. Garcia (2003) Surface chemistry modulates fibronectin conformation and directs integrin binding and specificity to control cell adhesion. J. Biomed. Mater. Res. A. 66: 247–259.

    Article  PubMed  Google Scholar 

  35. Hadden, W. J., J. L. Young, A. W. Holle, M. L. McFetridge, D. Y. Kim, P. Wijesinghe, H. Taylor-Weiner, J. H. Wen, A. R. Lee, K. Bieback, B. N. Vo, D. D. Sampson, B. F. Kennedy, J. P. Spatz, A. J. Engler, and Y. S. Choi (2017) Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc. Natl. Acad. Sci. USA. 114: 5647–5652.

    Article  CAS  PubMed  Google Scholar 

  36. Yim, E. K. F., E. M. Darling, K. Kulangara, F. Guilak, and K. W. Leong (2010) Nanotopography-induced changes in focal adhesions, cytoskeletal organization, and mechanical properties of human mesenchymal stem cells. Biomaterials. 31: 1299–1306.

    Article  CAS  PubMed  Google Scholar 

  37. Cassidy, J. W., J. N. Roberts, C. A. Smith, M. Robertson, K. White, M. J. Biggs, R. O. C. Oreffo, and M. J. Dalby (2014) Osteogenic lineage restriction by osteoprogenitors cultured on nanometric grooved surfaces: the role of focal adhesion maturation. Acta Biomater. 10: 651–660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Park, G. E., M. A. Pattison, K. Park, and T. J. Webster (2005) Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 26: 3075–3082.

    Article  CAS  PubMed  Google Scholar 

  39. Gauvreau, V. and G. Laroche (2005) Micropattern printing of adhesion, spreading, and migration peptides on poly(tetra-fluoroethylene) films to promote endothelialization. Bioconjug Chem. 16: 1088–1097.

    Article  CAS  PubMed  Google Scholar 

  40. Santiago, L. Y., R. W. Nowak, J. Peter Rubin, and K. G. Marra (2006) Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials. 27: 2962–2969.

    Article  CAS  PubMed  Google Scholar 

  41. Saleh, N. T., A. N. Sohi, E. Esmaeili, S. Karami, F. Soleimanifar, and N. Nasoohi (2019) Immobilized laminin-derived peptide can enhance expression of stemness markers in mesenchymal stem cells. Biotechnol. Bioprocess Eng. 24: 876–884.

    Article  CAS  Google Scholar 

  42. Wang, T. H. and W. C. Lee (2003) Immobilization of proteins on magnetic nanoparticles. Biotechnol. Bioprocess Eng. 8: 263–267.

    Article  CAS  Google Scholar 

  43. Elmengaard, B., J. E. Bechtold, and K. Soballe (2005) In vivo study of the effect of RGD treatment on bone ongrowth on press-fit titanium alloy implants. Biomaterials. 26: 3521–3526.

    Article  CAS  PubMed  Google Scholar 

  44. Elmengaard, B., J. E. Bechtold, and K. Soballe (2005) In vivo effects of RGD-coated titanium implants inserted in two bone-gap models. J. Biomed. Mater. Res. A. 75: 249–255.

    Article  PubMed  Google Scholar 

  45. Morra, M., C. Cassinelli, G. Cascardo, L. Mazzucco, P. Borzini, M. Fini, G. Giavaresi, and R. Giardino (2006) Collagen I-coated titanium surfaces: mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants. J. Biomed. Mater. Res. A. 78: 449–458.

    Article  CAS  PubMed  Google Scholar 

  46. Reyes, C. D., T. A. Petrie, K. L. Burns, Z. Schwartz, and A. J. Garcia (2007) Biomolecular surface coating to enhance orthopaedic tissue healing and integration. Biomaterials. 28: 3228–3235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Keselowsky, B. G., D. M. Collard, and A. J. Garcia (2005) Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. USA. 102: 5953–5957.

    Article  CAS  PubMed  Google Scholar 

  48. Wang, X., C. Yan, K. Ye, Y. He, Z. Li, and J. Ding (2013) Effect of RGD nanospacing on differentiation of stem cells. Biomaterials. 34: 2865–2874.

    Article  CAS  PubMed  Google Scholar 

  49. Petrie, T. A., J. R. Capadona, C. D. Reyes, and A. J. Garcia (2006) Integrin specificity and enhanced cellular activities associated with surfaces presenting a recombinant fibronectin fragment compared to RGD supports. Biomaterials. 27: 5459–5470.

    Article  CAS  PubMed  Google Scholar 

  50. Shu, X. Z., K. Ghosh, Y. Liu, F. S. Palumbo, Y. Luo, R. A. Clark, and G. D. Prestwich (2004) Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel. J. Biomed. Mater. Res. A. 68: 365–375.

    Article  PubMed  Google Scholar 

  51. Hersel, U., C. Dahmen, and H. Kessler (2003) RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 24: 4385–4415.

    Article  CAS  PubMed  Google Scholar 

  52. Kantlehner, M., D. Finsinger, J. Meyer, P. Schaffner, A. Jonczyk, B. Diefenbach, B. Nies, and H. Kessler (1999) Selective RGD-mediated adhesion of osteoblasts at surfaces of implants. Angew. Chem. Int. Ed. Engl. 38: 560–562.

    Article  CAS  PubMed  Google Scholar 

  53. Li, B., J. Chen, and J. H. C. Wang (2006) RGD peptide-conjugated poly(dimethylsiloxane) promotes adhesion, proliferation, and collagen secretion of human fibroblasts. J. Biomed. Mater. Res. A. 79: 989–998.

    Article  PubMed  Google Scholar 

  54. Sackmann, E. K., A. L. Fulton, and D. J. Beebe (2014) The present and future role of microfluidics in biomedical research. Nature. 507: 181–189.

    Article  CAS  PubMed  Google Scholar 

  55. Halldorsson, S., E. Lucumi, R. Gomez-Sjoberg, and R. M. T. Fleming (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63: 218–231.

    Article  CAS  PubMed  Google Scholar 

  56. Yu, S. J., K. Pak, M. J. Kwak, M. Joo, B. J. Kim, M. S. Oh, J. Baek, H. Park, G. Choi, D. H. Kim, J. Choi, Y. Choi, J. Shin, H. Moon, E. Lee, and S. G. Im (2018) Initiated chemical vapor deposition: a versatile tool for various device applications. Adv. Eng. Mater. 20: 1700622.

    Article  Google Scholar 

  57. Kim, S. H., H. R. Lee, S. J. Yu, M. E. Han, D. Y. Lee, S. Y. Kim, H. J. Ahn, M. J. Han, T. I. Lee, T. S. Kim, S. K. Kwon, S. G. Im, and N. S. Hwang (2015) Hydrogel-laden paper scaffold system for origami-based tissue engineering. Proc. Natl. Acad. Sci. USA. 112: 15426–15431.

    Article  CAS  PubMed  Google Scholar 

  58. You, J. B., Y. Yoo, M. S. Oh, and S. G. Im (2014) Simple and reliable method to incorporate the Janus property onto arbitrary porous substrates. ACS Appl. Mater. Interfaces. 6: 4005–4010.

    Article  CAS  PubMed  Google Scholar 

  59. Im, S. G., K. W. Bong, C. H. Lee, P. S. Doyle, and K. K. Gleason (2009) A conformal nano-adhesive via initiated chemical vapor deposition for microfluidic devices. Lab. Chip. 9: 411–416.

    Article  CAS  PubMed  Google Scholar 

  60. You, J. B., K. Kang, T. T. Tran, H. Park, W. R. Hwang, J. M. Kim, and S. G. Im (2015) PDMS-based turbulent microfluidic mixer. Lab. Chip. 15: 1727–1735.

    Article  CAS  PubMed  Google Scholar 

  61. Cha, S., K. Kang, J. B. You, S. G. Im, Y. Kim, and J. M. Kim (2014) Hoop stress-assisted three-dimensional particle focusing under viscoelastic flow. Rheol. Acta. 53: 927–933.

    Article  CAS  Google Scholar 

  62. Kwak, M. J., M. S. Oh, Y. Yoo, J. B. You, J. Kim, S. J. Yu, and S. G. Im (2015) Series of liquid separation system made of homogeneous copolymer films with controlled surface wettability. Chem. Mater. 27: 3441–3449.

    Article  CAS  Google Scholar 

  63. Baek, J., Y. Cho, H. J. Park, G. Choi, J. S. Lee, M. Lee, S. J. Yu, S. W. Cho, E. Lee, and S. G. Im (2020) A surface-tailoring method for rapid non-thermosensitive cell-sheet engineering via functional polymer coatings. Adv. Mater. 32: 1907225.

    Article  CAS  Google Scholar 

  64. Ayhan, H. and E. Piskin (2000) Collagen immobilization onto P(EGDMA/HEMA) microbeads for cell affinity systems. J. Bioact. Compat. Polym. 15: 27–42.

    Article  CAS  Google Scholar 

  65. Lee, S. J., J. P. Park, T. J. Park, S. Y. Lee, S. Lee, and J. K. Park (2005) Selective immobilization of fusion proteins on poly(hydroxyalkanoate) microbeads. Anal. Chem. 77: 5755–5759.

    Article  CAS  PubMed  Google Scholar 

  66. Yildirim, E. D., R. Besunder, D. Pappas, F. Allen, S. Guceri, and W. Sun (2010) Accelerated differentiation of osteoblast cells on polycaprolactone scaffolds driven by a combined effect of protein coating and plasma modification. Biofabrication. 2: 014109.

    Article  PubMed  Google Scholar 

  67. Vepari, C. P. and D. L. Kaplan (2006) Covalently immobilized enzyme gradients within three-dimensional porous scaffolds. Biotechnol. Bioeng. 93: 1130–1137.

    Article  CAS  PubMed  Google Scholar 

  68. Horne, M. K., D. R. Nisbet, J. S. Forsythe, and C. L. Parish (2010) Three-dimensional nanofibrous scaffolds incorporating immobilized BDNF promote proliferation and differentiation of cortical neural stem cells. Stem Cells Dev. 19: 843–852.

    Article  CAS  PubMed  Google Scholar 

  69. Rusmini, F., Z. Zhong, and J. Feijen (2007) Protein immobilization strategies for protein biochips. Biomacromolecules. 8: 1775–1789.

    Article  CAS  PubMed  Google Scholar 

  70. Kim, D. and A. E. Herr (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics. 7: 41501.

    Article  PubMed  Google Scholar 

  71. Kim, H. J., J. N. Jin, E. Kan, K. J. Kim, and S. H. Lee (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioprocess Eng. 22: 89–94.

    Article  CAS  Google Scholar 

  72. Raja, D. S., W. L. Liu, H. Y. Huang, and C. H. Lin (2015) Immobilization of protein on nanoporous metal-organic framework materials. Comments Inorg. Chem. 35: 331–349.

    Article  Google Scholar 

  73. Mahmoudifard, M., S. Soudi, M. Soleimani, S. Hosseinzadeh, E. Esmaeili, and M. Vossoughi (2016) Efficient protein immobilization on polyethersolfone electrospun nanofibrous membrane via covalent binding for biosensing applications. Mater. Sci. Eng. C. Mater. Biol. Appl. 58: 586–594.

    Article  CAS  PubMed  Google Scholar 

  74. Zhao, M., H. Li, W. Liu, Y. Guo, and W. Chu (2016) Plasma treatment of paper for protein immobilization on paper-based chemiluminescence immunodevice. Biosens. Bioelectron. 79: 581–588.

    Article  CAS  PubMed  Google Scholar 

  75. Kong, F. and Y. F. Hu (2012) Biomolecule immobilization techniques for bioactive paper fabrication. Anal. Bioanal. Chem. 403: 7–13.

    Article  CAS  PubMed  Google Scholar 

  76. Hong, W., S. G. Jeong, G. Shim, D. Y. Kim, S. P. Pack, and C. S. Lee (2018) Improvement in the reproducibility of a paper-based analytical device (PAD) using stable covalent binding between proteins and cellulose paper. Biotechnol. Bioprocess Eng. 23: 686–692.

    Article  CAS  PubMed  Google Scholar 

  77. Borkenhagen, M., J. F. Clemence, H. Sigrist, and P. Aebischer (1998) Three-dimensional extracellular matrix engineering in the nervous system. J. Biomed. Mater. Res. 40: 392–400.

    Article  CAS  PubMed  Google Scholar 

  78. Waseem, S. F., S. D. Gardner, G. He, W. Jiang, and U. Pittman Jr (1998) Adhesion and surface analysis of carbon fibres electrochemically oxidized in aqueous potassium nitrate. J. Mater. Sci. 33: 3151–3162.

    Article  CAS  Google Scholar 

  79. Yuguo, W., W. Yulin, W. Yizao, and D. Xianghong (2001) Effects of fiber surface treatment on mechanical properties of 3D braided carbon fiber/epoxy composite materials. Ordnance Mater. Sci. Eng. 2001: 41–44.

    Google Scholar 

  80. Jeong, G. M., H. Seong, Y. S. Kim, S. G. Im, and K. J. Jeong (2014) Site-specific immobilization of proteins on non-conventional substrates via solvent-free initiated chemical vapour deposition (iCVD) process. Polym. Chem. 5: 4459–4465.

    Article  CAS  Google Scholar 

  81. Kang, B. J., H. Kim, S. K. Lee, J. Kim, Y. Shen, S. Jung, K. S. Kang, S. G. Im, S. Y. Lee, M. Choi, N. S. Hwang, and J. Y. Cho (2014) Umbilical-cord-blood-derived mesenchymal stem cells seeded onto fibronectin-immobilized polycaprolactone nanofiber improve cardiac function. Acta Biomater. 10: 3007–3017.

    Article  CAS  PubMed  Google Scholar 

  82. Youn, Y. H., S. J. Lee, G. R. Choi, H. R. Lee, D. Lee, D. N. Heo, B. S. Kim, J. B. Bang, Y. S. Hwang, V. M. Correlo, R. L. Reis, S. G. Im, and I. K. Kwon (2019) Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. Mater. Sci. Eng. C Mater. Biol. Appl. 100: 949–958.

    Article  CAS  PubMed  Google Scholar 

  83. Bilek, M. M., D. V. Bax, A. Kondyurin, Y. Yin, N. J. Nosworthy, K. Fisher, A. Waterhouse, A. S. Weiss, C. G. dos Remedios, and D. R. McKenzie (2011) Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc. Natl. Acad. Sci. USA. 108: 14405–14410.

    Article  CAS  PubMed  Google Scholar 

  84. Montes-Morán, M. A., A. Martínez-Alonso, J. M. D. Tascón, M. C. Paiva, and C. A. Bernardo (2001) Effects of plasma oxidation on the surface and interfacial properties of carbon fibres/polycarbonate composites. Carbon. 39: 1057–1068.

    Article  Google Scholar 

  85. Rucker, V. C., K. L. Havenstrite, B. A. Simmons, S. M. Sickafoose, A. E. Herr, and R. Shediac (2005) Functional antibody immobilization on 3-dimensional polymeric surfaces generated by reactive ion etching. Langmuir. 21: 7621–7625.

    Article  CAS  PubMed  Google Scholar 

  86. Lasseter, T. L., B. H. Clare, N. L. Abbott, and R. J. Hamers (2004) Covalently modified silicon and diamond surfaces: Resistance to nonspecific protein adsorption and optimization for biosensing. J. Am. Chem. Soc. 126: 10220–10221.

    Article  CAS  PubMed  Google Scholar 

  87. Junkar, I., U. Cvelbar, and M. Lehocky (2011) Plasma treatment of biomedical materials. Mater. Technol. 45: 221–226.

    CAS  Google Scholar 

  88. Simoncicova, J., S. Krystofova, V. Medvecka, K. Durisova, and B. Kalinakova (2019) Technical applications of plasma treatments: current state and perspectives. Appl. Microbiol. Biotechnol. 103:5117–5129.

    Article  CAS  PubMed  Google Scholar 

  89. Bilek, M. M. and D. R. McKenzie (2010) Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys. Rev. 2: 55–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Martin, L. J., B. Akhavan, and M. M. M. Bilek (2018) Electric fields control the orientation of peptides irreversibly immobilized on radical-functionalized surfaces. Nat. Commun. 9: 357.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Nabesawa, H., T. Hitobo, S. Wakabayashi, T. Asaji, T. Abe, and M. Seki (2008) Polymer surface morphology control by reactive ion etching for microfluidic devices. Sens. Actuators B Chem. 132: 637–643.

    Article  CAS  Google Scholar 

  92. Ganjian, M., K. Modaresifar, H. Zhang, P. L. Hagedoorn, L. E. Fratila-Apachitei, and A. A. Zadpoor (2019) Reactive ion etching for fabrication of biofunctional titanium nanostructures. Sci. Rep. 9: 18815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Choi, G., G. M. Jeong, M. S. Oh, M. Joo, S. G. Im, K. J. Jeong, and E. Lee (2018) Robust thin film surface with a selective antibacterial property enabled via a cross-linked ionic polymer coating for infection-resistant medical applications. ACS Biomater. Sci. Eng. 4: 2614–2622.

    Article  CAS  PubMed  Google Scholar 

  94. Park, H. J., S. J. Yu, K. Yang, Y. Jin, A. N. Cho, J. Kim, B. Lee, H. S. Yang, S. G. Im, and S. W. Cho (2014) Paper-based bioactive scaffolds for stem cell-mediated bone tissue engineering. Biomaterials. 35: 9811–9823.

    Article  CAS  PubMed  Google Scholar 

  95. Mansurnezhad, R., L. Ghasemi-Mobarakeh, A. M. Coclite, M. H. Beigi, H. Gharibi, O. Werzer, M. Khodadadi-Khorzoughi, and M. H. Nasr-Esfahani (2020) Fabrication, characterization and cytocompatibility assessment of gelatin nanofibers coated with a polymer thin film by initiated chemical vapor deposition. Mater. Sci. Eng. C Mater. Biol. Appl. 110: 110623.

    Article  CAS  PubMed  Google Scholar 

  96. Hanak, B. W., C. Y. Hsieh, W. Donaldson, S. R. Browd, K. K. Lau, and W. Shain (2018) Reduced cell attachment to poly(2-hydroxyethyl methacrylate)-coated ventricular catheters in vitro. J. Biomed. Mater. Res. B. 106: 1268–1279.

    Article  CAS  Google Scholar 

  97. You, J. B., A. Y. Choi, J. Baek, M. S. Oh, S. G. Im, K. E. Lee, and H. S. Gwak (2015) Application of monodirectional Janus patch to oromucosal delivery system. Adv. Healthcare Mater. 4: 2229–2236.

    Article  CAS  Google Scholar 

  98. An, Y. H., S. J. Yu, I. S. Kim, S. H. Kim, J. M. Moon, S. L. Kim, Y. H. Choi, J. S. Choi, S. G. Im, K. E. Lee, and N. S. Hwang (2017) Hydrogel functionalized Janus membrane for skin regeneration. Adv. Healthcare Mater. 6: 1600795.

    Article  Google Scholar 

  99. Sayin, S., A. Tufani, M. Emanet, G. G. Genchi, O. Sen, S. Shemshad, E. Ozdemir, G. Ciofani, and G. O. Ince (2019) Electrospun nanofibers with pH-responsive coatings for control of release kinetics. Front. Bioeng. Biotechnol. 7: 309.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bedair, T. M., S. J. Yu, S. G. Im, B. J. Park, Y. K. Joung, and D. K. Han (2015) Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent. J. Colloid Interface Sci. 460: 189–199.

    Article  CAS  PubMed  Google Scholar 

  101. Baek, J., W. B. Jung, Y. Cho, E. Lee, G. T. Yun, S. Y. Cho, H. T. Jung, and S. G. Im (2019) Facile fabrication of high-definition hierarchical wrinkle structures for investigating the geometry-sensitive fate commitment of human neural stem cells. ACS Appl. Mater. Interfaces. 11: 17247–17255.

    Article  CAS  PubMed  Google Scholar 

  102. Baek, J., S. Y. Cho, H. Kang, H. Ahn, W. B. Jung, Y. Cho, E. Lee, S. W. Cho, H. T. Jung, and S. G. Im (2018) Distinct mechanosensing of human neural stem cells on extremely limited anisotropic cellular contact. ACS Appl. Mater. Interfaces. 10: 33891–33900.

    Article  CAS  PubMed  Google Scholar 

  103. Kim, M. J., B. Lee, K. Yang, J. Park, S. Jeon, S. H. Um, D. I. Kim, S. G. Im, and S. W. Cho (2013) BMP-2 peptide-functionalized nanopatterned substrates for enhanced osteogenic differentiation of human mesenchymal stem cells. Biomaterials. 34: 7236–7246.

    Article  CAS  PubMed  Google Scholar 

  104. Jung, I. Y., J. B. You, B. R. Choi, J. S. Kim, H. K. Lee, B. Jang, H. S. Jeong, K. Lee, S. G. Im, and H. Lee (2016) A highly sensitive molecular detection platform for robust and facile diagnosis of Middle East Respiratory Syndrome (MERS) corona virus. Adv. Healthcare Mater. 5: 2168–2173.

    Article  CAS  Google Scholar 

  105. You, J. B., Y. T. Kim, K. G. Lee, Y. Choi, S. Choi, C. H. Kim, K. H. Kim, S. J. Chang, T. J. Lee, S. J. Lee, and S. G. Im (2017) Surface-modified mesh filter for direct nucleic acid extraction and its application to gene expression analysis. Adv. Healthcare Mater. 6: 1700642.

    Article  Google Scholar 

  106. Choi, Y., Y. T. Kim, S. J. Lee, E. Lee, K. G. Lee, and S. G. Im (2020) Direct solvent-free modification of the inner wall of the microchip for rapid DNA extraction with enhanced capturing efficiency. Macromol. Res. 28: 249–256.

    Article  CAS  Google Scholar 

  107. Choi, Y., Y. T. Kim, J. B. You, S. H. Jo, S. J. Lee, S. G. Im, and K. G. Lee (2019) An efficient isolation of foodborne pathogen using surface-modified porous sponge. Food Chem. 270: 445–451.

    Article  CAS  PubMed  Google Scholar 

  108. Shin, J., H. Kim, H. Moon, M. J. Kwak, S. Oh, Y. Yoo, E. Lee, Y. K. Chang, and S. G. Im (2018) A hydrogel-coated membrane for highly efficient separation of microalgal bio-lipid. Korean J. Chem. Eng. 35: 1319–1327.

    Article  CAS  Google Scholar 

  109. Ozaydin-Ince, G., J. M. Dubach, K. K. Gleason, and H. A. Clark (2011) Microworm optode sensors limit particle diffusion to enable in vivo measurements. Proc. Natl. Acad. Sci. USA. 108: 2656–2661.

    Article  CAS  PubMed  Google Scholar 

  110. Achyuta, A. K. H., V. S. Polikov, A. J. White, H. G. P. Lewis, and S. K. Murthy (2010) Biocompatibility assessment of insulating silicone polymer coatings using an in vitro glial scar assay. Macromol. Biosci. 10: 872–880.

    Article  CAS  PubMed  Google Scholar 

  111. Choi, G., Y. Song, H. Lim, S. H. Lee, H. K. Lee, E. Lee, B. G. Choi, J. J. Lee, S. G. Im, and K. G. Lee (2020) Antibacterial nanopillar array for an implantable intraocular lens. Adv. Healthcare Mater. 9: 2000447.

    Article  CAS  Google Scholar 

Download references

Acknowldgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (Grant 2021R1A2B5B03001416), Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2020R1I1A1A01066621) and the Technology Innovation Program (No. 20008777) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eunjung Lee or Sung Gap Im.

Additional information

Ethical Statements

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Y., Lee, M., Park, S. et al. A Versatile Surface Modification Method via Vapor-phase Deposited Functional Polymer Films for Biomedical Device Applications. Biotechnol Bioproc E 26, 165–178 (2021). https://doi.org/10.1007/s12257-020-0269-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0269-1

Keywords