Skip to main content
Log in

Co-evolving with Nature: The Recent Trends on the Mussel-inspired Polymers in Medical Adhesion

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The rise in the number of daily surgical procedures and the disadvantages posed by the present surgical closure techniques (such as secondary tissue damage and microbial infection) magnifies the immediate need for metamorphosing the current bioadhesives perceiving to tether wounds efficiently. To this context, the emerging scope of biomimetics has allowed mussel inspired adhesives rendering efficient bonding characteristics on a variety of substrates. The mussel adhesion proteins and its derivatives, such as 3,4-dihydroxyphenylalanine and dopamine, are therefore widely being studied to modify the biopolymers, attempting to enhance the adhesive attributes. The polarity of the catechol groups in the protein conformation aids in the development of both noncovalent interactions (electrostatic interaction, hydrogen bonding, metal/ligand coordination bond, π-π/cation-π interactions) and covalent interactions (crosslinking), thereby promoting superior tissue adhesion. This narrative is an attempt to tether the recent developments in the mussel-inspired polymer adhesives, connecting the footprints of how these materials evolved with its current state of the art.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, B. K. (2017) Perspectives on mussel-inspired wet adhesion. J Am Chem Soc. 139: 10166–10171.

    Article  CAS  PubMed  Google Scholar 

  2. Medical biomimetics market size by product [cardiovascular, orthopedic (prostheses, exoskeleton), ophthalmology, dental], by application (plastic surgery, wound healing, tissue engineering, drug delivery), industry analysis report, regional outlook, application potential, price trends, competitive market share & forecast, 2019–2025. https://www.gminsights.com/industry-analysis/medical-biomimetics-market?utm_source=prnewswire.com&utm_medium=referral&utm_campaign=Paid_prnewswire.

  3. Shi, J., A. R. Votruba, O. C. Farokhzad, and R. Langer (2010) Nanotechnology in drug delivery and tissue engineering: from discovery to applications. Nano Lett. 10: 3223–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khademhosseini, A., J. P. Vacanti, and R. Langer (2009) Progress in tissue engineering. Sci. Am. 300: 64–71.

    Article  CAS  PubMed  Google Scholar 

  5. Balkenende, D. W. R., S. M. Winkler, and P. B. Messersmith (2019) Marine-inspired polymers in medical adhesion. Eur. Polym. J. 116: 134–143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Basak, S. (2020) Walking through the biomimetic bandages inspired by Gecko’s feet. Bio-des Manuf. 3: 148–154.

    Article  Google Scholar 

  7. Basak, S. (2020) Redefining stickiness — A reflection on the gecko inspired adhesives possessing self-cleaning traits. J. Adhes. Sci. Technol. DOI: https://doi.org/10.1080/01694243.2020.1851938.

  8. Endlein, T., A. Ji, S. Yuan, I. Hill, H. Wang, W. J. P. Barnes, Z. Dai, and M. Sitti (2017) The use of clamping grips and friction pads by tree frogs for climbing curved surfaces. Proc. Biol. Sci. 284: 20162867.

    PubMed  PubMed Central  Google Scholar 

  9. Shimamura, Y., R. Murayama, H. Kurokawa, M. Miyazaki, Y. Mihata, and S. Kmaguchi (2011) Influence of tooth-surface hydration conditions on optical coherence-tomography imaging. J. Dent. 39: 572–577.

    Article  PubMed  Google Scholar 

  10. Jones, F. H. (2001) Teeth and bones: Applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 42: 75–205.

    Article  CAS  Google Scholar 

  11. Fu, Y., P. Ren, F. Wang, M. Liang, W. Hu, N. Zhou, Z. Lu, and T. Zhang (2020) Mussel-inspired hybrid network hydrogel for continuous adhesion in water. J. Mater. Chem. B. 8: 2148–2154.

    Article  CAS  PubMed  Google Scholar 

  12. Lu, Q., D. X. Oh, Y. Lee, Y. Jho, D. S. Hwang, and H. Zeng (2013) Nanomechanics of cation-n interactions in aqueous solution. Angew. Chem. Int. Ed. Engl. 52: 3944–3948.

    Article  CAS  PubMed  Google Scholar 

  13. Gebbie, M. A., W. Wei, A. M. Schrader, T. R. Cristiani, H. A. Dobbs, M. Idso, B. F. Chmelka, J. H. Waite, and J. N. Israelachvili (2017) Tuning underwater adhesion with cation-π interactions. Nature Chem. 9: 473–479.

    Article  CAS  Google Scholar 

  14. Nature’s wisdom: 9 brilliant examples of biomimicry in design. https://www.momtastic.com/webecoist/2014/12/31/natures-wisdom-9-brilliant-examples-of-biomimicry-in-design/.

  15. Autumn, K., A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky (2006) Frictional adhesion: A new angle on gecko attachment. J. Exp. Biol. 209: 3569–3579.

    Article  CAS  PubMed  Google Scholar 

  16. Rahimnejad, M. and W. Zhong (2017) Mussel-inspired hydrogel tissue adhesives for wound closure. RSC Adv. 7: 47380–47396.

    Article  CAS  Google Scholar 

  17. Li, L. and H. Zeng (2015) Marine mussel adhesion and bio-inspired wet adhesives. Biotribology. 5: 44–51.

    Article  Google Scholar 

  18. Aldred, N., L. K. Ista, M. E. Callow, J. A. Callow, G. P. Lopez, and A. S. Clare (2006) Mussel (Mytilus edulis) byssus deposition in response to variations in surface wettability. J. R. Soc. Interface. 3: 37–43.

    Article  CAS  PubMed  Google Scholar 

  19. Waite, J. H. (1992) The formation of mussel byssus: anatomy of a natural manufacturing process. Results Probl. Cell Differ. 19: 27–54.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, B. P., P. B. Messersmith, J. N. Israelachvili, and J. H. Waite (2011) Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 41: 99–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Waite, J. H., H. C. Lichtenegger, G. D. Stucky, and P. Hansma (2004) Exploring molecular and mechanical gradients in structural bioscaffolds. Biochemistry. 43: 7653–7662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rzepecki, L. M, K. M. Hansen, and J. H. Waite (1992) Characterization of a cystine-rich polyphenolic protein family from the blue mussel Mytilus edulis L. Biol. Bull. 183: 123–137.

    Article  CAS  PubMed  Google Scholar 

  23. Deacon, M. P., S.S. Davis, J. H. Waite, and S. E. Harding (1998) Structure and mucoadhesion of mussel glue protein in dilute solution. Biochemistry. 37: 14108–14112.

    Article  CAS  PubMed  Google Scholar 

  24. Inoue, K., Y. Takeuchi, D. Miki, and S. Odo (1995) Mussel adhesive plaque protein gene is a novel member of epidermal growth factor-like gene family. J. Biol. Chem. 270: 6698–6701.

    Article  CAS  PubMed  Google Scholar 

  25. Papov, V. V., T. V. Diamond, K. Biemann, and J. H. Waite (1995) Hydroxyarginine-containing polyphenolic proteins in the adhesive plaques of the marine mussel Mytilus edulis. J. Biol. Chem. 270: 20183–20192.

    Article  CAS  PubMed  Google Scholar 

  26. Zhao, H. and J. H. Waite (2006) Proteins in load-bearing junctions: the histidine-rich metal-binding protein of mussel byssus. Biochemistry. 45: 14223–14231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waite, J. H. and X. Qin (2001) Polyphosphoprotein from the adhesive pads of Mytilus edulis. Biochemistry. 40: 2887–2893.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao, H. and J. H. Waite (2006) Linking adhesive and structural proteins in the attachment plaque of Mytilus californianus. J. Biol. Chem. 281: 26150–26158.

    Article  CAS  PubMed  Google Scholar 

  29. Zeng, H., D. S. Hwang, J. N. Israelachvili, and J. H. Waite (2010) Strong reversible Fe3−-mediated bridging between dopa-containing protein films in water. Proc. Natl. Acad. Sci. USA. 107: 12850–12853.

    Article  CAS  PubMed  Google Scholar 

  30. Lin, Q., D. Gourdon, C. Sun, N. Holten-Andersen, T. H. Anderson, J. H. Waite, and J. N. Israelachvili (2007) Adhesion mechanisms of the mussel foot proteins mfp-1 and mfp-3. Proc. Natl. Acad. Sci. USA. 104: 3782–3786.

    Article  CAS  PubMed  Google Scholar 

  31. Holten-Andersen, N., G. E. Fantner, S. Hohlbauch, J. H. Waite, and F. W. Zok (2007) Protective coatings on extensible biofibres. Nat. Mater. 6: 669–672.

    Article  CAS  PubMed  Google Scholar 

  32. Hwang, D. S., H. Zeng, A. Masic, M. J. Harrington, J. N. Israelachvili, and J. H. Waite (2010) Protein- and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 285: 25850–25858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lu, Q., E. Danner, J. H. Waite, J. N. Israelachvili, H. Zeng, and D. S. Hwang (2013) Adhesion of mussel foot proteins to different substrate surfaces. J. R. Soc. Interface. 10: 20120759.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hwang, D. S., H. J. Yoo, J. H. Jun, W. K. Moon, and H. J. Cha (2004) Expression of functional recombinant mussel adhesive protein Mgfp-5 in Escherichia coli. Appl. Environ. Microbiol. 70: 3352–3359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Even, M. A, J. Wang, and Z. Chen (2008) Structural information of mussel adhesive protein Mefp-3 acquired at various polymer/Mefp-3 solution interfaces. Langmuir. 24: 5795–5801.

    Article  CAS  PubMed  Google Scholar 

  36. Yu, J., W. Wei, E. Danner, R. K. Ashley, J. N. Israelachvili, and J. H. Waite (2011) Mussel protein adhesion depends on interprotein thiol-mediated redox modulation. Nat. Chem. Biol. 7: 588–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Amanda, A., M. Krogsgaard, and H. Birkedal (2018) Mussel-inspired self-healing double-cross-linked hydrogels by controlled combination of metal coordination and covalent cross-linking. Biomacromolecules. 19: 1402–1409.

    Article  Google Scholar 

  38. Waite, J. H. and M. L. Tanzer (1981) Polyphenolic substance of Mytilus edulis: Novel adhesive containing L-dopa and hydroxyproline. Science. 212: 1038–1040.

    Article  CAS  PubMed  Google Scholar 

  39. Priemel, T., R. Palia, M. Babych, C. J. Thibodeaux, S. Bourgault, and M. J. Harrington (2020) Compartmentalized processing of catechols during mussel byssus fabrication determines the destiny of DOPA. Proc. Natl. Acad. Sci. USA. 117: 7613–7621.

    Article  CAS  PubMed  Google Scholar 

  40. Guo, J., G. B. Kim, D. Shan, J. P. Kim, J. Hu, W. Wang, F. G. Hamad, G. Qian, E. B. Rizk, and J. Yang (2017) Click chemistry improved wet adhesion strength of mussel-inspired citrate-based antimicrobial bioadhesives. Biomaterials. 112: 275–286.

    Article  CAS  PubMed  Google Scholar 

  41. Schnurrer, J. and C. M. Lehr (1996) Mucoadhesive properties of the mussel adhesive protein. Int. J. Pharm. 141: 251–256.

    Article  CAS  Google Scholar 

  42. Qvist, M. and H. A. Hansson (2001) New use of a bioadhesive composition comprising a polyphenolic protein. WO Patent 01/044401 A1.

  43. Notter, M. F. (1988) Selective attachment of neural cells to specific substrates including Cell-Tak, a new cellular adhesive. Exp. Cell Res. 177: 237–246.

    Article  CAS  PubMed  Google Scholar 

  44. Tatehata, H., A. Mochizuki, T. Kawashima, S. Yamashita, and H. Yamamoto (2000) Model polypeptide of mussel adhesive protein. I. Synthesis and adhesive studies of sequential polypeptides (X-Tyr-Lys)n and (Y-Lys)n. J. Appl. Polym. Sci. 76: 929–937.

    Article  CAS  Google Scholar 

  45. Kim, B. J., D. X. Oh, S. Kim, J. H. Seo, D. S. Hwang, A. Masic, D. K. Han, and H. J. Cha (2014) Mussel-mimetic protein-based adhesive hydrogel. Biomacromolecules. 15: 1579–1585.

    Article  CAS  PubMed  Google Scholar 

  46. Hwang, D. S., Y. Gim, H. J. Yoo, and H. J. Cha (2007) Practical recombinant hybrid mussel bioadhesive fp-151. Biomaterials. 28: 3560–3568.

    Article  CAS  PubMed  Google Scholar 

  47. Hwang, D. S., K. R. Kim, S. Lim, Y. S. Choi, and H. J. Cha (2009) Recombinant mussel adhesive protein as a gene delivery material. Biotechnol. Bioeng. 102: 616–623.

    Article  CAS  PubMed  Google Scholar 

  48. Dwivedi, A. D., N. D. Sanandiya, J. P. Singh, S. M. Husnain, K. H. Chae, D. S. Hwang, and Y. S. Chang (2016) Tuning and characterizing nanocellulose interface for enhanced removal of dual-sorbate (AsV and CrVI) from water matrices. ACS Sustainable Chem. Eng. 5: 518–528.

    Article  Google Scholar 

  49. Ryu, J. H., Y. Lee, W. H. Kong, T. G. Kim, T. G Park, and H. Lee (2011) Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules. 12: 2653–2659.

    Article  CAS  PubMed  Google Scholar 

  50. Ryu, J. H., S. Hong, and H. Lee (2015) Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review. Acta. Biomater. 27: 101–115.

    Article  CAS  PubMed  Google Scholar 

  51. Shin, J., J. S. Lee, C. Lee, H. J. Park, K. Yang, Y. Jin, J. H. Ryu, K. S. Hong, S. H. Moon, H. M. Chung, H. S. Yang, S. H. Um, J. W. Oh, D. I. Kim, H. Lee, and S. W. Cho (2015) Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy. Adv. Funct. Mater. 25: 3814–3824.

    Article  CAS  Google Scholar 

  52. Suneetha, M., K. M. Rao, and S. S. Han (2019) Mussel-inspired cell/tissue-adhesive, hemostatic hydrogels for tissue engineering applications. ACS Omega. 4: 12647–12656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ryu, J. H., J. S. Choi, E. Park, M. R. Eom, S. Jo, M. S. Lee, S. K. Kwon, and H. Lee (2020) Chitosan oral patches inspired by mussel adhesion. J. Control. Release. 317: 57–66.

    Article  CAS  PubMed  Google Scholar 

  54. Kaleem, K., F. Chertok, and S. Erhan (1987) Collagen-based bioadhesive barnacle cement mimic. I. Chemical and enzymatic studies. Angew. Makromol. Chem. 155: 31–43.

    Article  CAS  Google Scholar 

  55. Gan, D., T. Xu, W. Xing, M. Wang, J. Fang, K. Wang, X. Ge, C. W. Chan, F. Ren, H. Tan, and X. Lu (2019) Mussel-inspired dopamine oligomer intercalated tough and resilient gelatin methacryloyl (GelMA) hydrogels for cartilage regeneration. J. Mater. Chem. B. 7: 1716–1725.

    Article  CAS  PubMed  Google Scholar 

  56. Liu, Y., S. C. Ng., J. Yu, and W. B. Tsai (2019) Modification and crosslinking of gelatin-based biomaterials as tissue adhesives. Colloids Surf. B Biointerfaces. 174: 316–323.

    Article  CAS  PubMed  Google Scholar 

  57. Pandey, N., L. F. Soto-Garcia, J. Liao, P. Zimmern, K. T. Nguyen, and Y. Hong (2020) Mussel-inspired bioadhesives in healthcare: design parameters, current trends, and future perspectives. Biomater Sci. 8: 1240–1255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Deming, T. J. and M. Yu (2003) Synthesis and crosslinking of catechol containing copolypeptides. US Patent 6,506,577 B1.

  59. Lee, B. P., J. L. Dalsin, and P. B. Messersmith (2002) Synthesis and gelation of DOPA-modified poly(ethylene glycol) hydrogels. Biomacromolecules. 3: 1038–1047.

    Article  CAS  PubMed  Google Scholar 

  60. Brubaker, C. E., H. Kissler, L. J. Wang, D. B. Kaufman, and P. B. Messersmith (2010) Biological performance of mussel-inspired adhesive in extrahepatic islet transplantation. Biomaterials. 31: 420–427.

    Article  CAS  PubMed  Google Scholar 

  61. Lu, X., S. Shi, H. Li, E. Gerhard, Z. Lu, X. Tan, W. Li, K. M. Rahn, D. Xie, G. Xu, F. Zou, X. Bai, J. Guo, and J. Yang (2020) Magnesium oxide-crosslinked low-swelling citrate-based mussel-inspired tissue adhesives. Biomaterials. 232: 119719.

    Article  CAS  PubMed  Google Scholar 

  62. Brubaker, C. E. and P. B. Messersmith (2011) Enzymatically degradable mussel-inspired adhesive hydrogel. Biomacromolcules. 12: 4326–4334.

    Article  CAS  Google Scholar 

  63. Barrett, D. G., G. G. Bushnell, and P. B. Messersmith (2013) Mechanically robust, negative-swelling, mussel-inspired tissue adhesives. Adv. Healthc. Mater. 2: 745–755.

    Article  CAS  PubMed  Google Scholar 

  64. Chung, H. and R. H. Grubbs (2012) Rapidly cross-linkable DOPA containing terpolymer adhesives and PEG-based cross-linkers for biomedical applications. Macromolecules. 45: 9666–9673.

    Article  CAS  Google Scholar 

  65. Shi, Y., P. Zhou, V. Jerome, R. Freitag, and S. Agarwal (2015) Enzymatically degradable polyester-based adhesives. ACS Biomater. Sci. Eng. 1: 971–977.

    Article  CAS  PubMed  Google Scholar 

  66. He, L., D. E. Fullenkamp, J. G. Rivera, and P. B. Messersmith (2011) pH responsive self-healing hydrogels formed by boronatecatechol complexation. Chem Commun (Camb). 47: 7497–7499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ma, Y., S. Ma, Y. Wu, X. Pei, S. N. Gorb, Z. Wang, W. Liu, and F. Zhou (2018) Remote control over underwater dynamic attachment/detachment and locomotion. Adv. Mater. 30: e1801595.

    Article  PubMed  Google Scholar 

  68. Budisa, N. and T. Schneider (2019) Expanding the DOPA universe with genetically encoded, mussel-inspired bioadhesives for material sciences and medicine. Chembiochem. 20: 2163–2190.

    Article  CAS  PubMed  Google Scholar 

  69. Forooshani, P. K. and B. P. Lee (2017) Recent approaches in designing bioadhesive materials inspired by mussel adhesive protein. J. Polym. Sci. A Polym. Chem. 55: 9–33.

    Article  Google Scholar 

  70. Andrade, G R., J. L. F. de Araújo, A. N. Filho, A. C. P. Guañabens, M. D. de Carvalho, and A. V. Cardoso (2015) Functional surface of the golden mussel’s foot: morphology, structures and the role of cilia on underwater adhesion. Mater. Sci. Eng. C Mater. Biol. Appl. 54: 32–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I want to thank the Department of Polymer Science and Technology, the University of Calcutta, and for introducing me to the beautiful world of biomimetics and nature-inspired science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Basak.

Additional information

Declarations

All individuals listed as authors qualify as authors and have approved the submitted version.

Their work is original and is not under consideration by any other journal.

They have permission to reproduce any previously published material.

Funding

Not Applicable

Conflict of Interest

Sayan Basak declares that he has no conflict of interest.

Availability of Data and Material

Not Applicable

Ethics Approval

Not Applicable

Human/Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Code Availability

This article does not contain any code

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basak, S. Co-evolving with Nature: The Recent Trends on the Mussel-inspired Polymers in Medical Adhesion. Biotechnol Bioproc E 26, 10–24 (2021). https://doi.org/10.1007/s12257-020-0234-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0234-z

Keywords

Navigation