Skip to main content
Log in

Oxygen Uptake Rate Controlling Strategy Balanced with Oxygen Supply for Improving Coenzyme Q10 Production by Rhodobacter sphaeroides

  • Research Paper
  • Bioprocess Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effects of different oxygen uptake rates (OUR) on the physiological metabolism of Rhodobacter sphaeroides were investigated systematically in 50 L fermenters due to the significant influence on industrial coenzyme Q10 production under oxygen supply limitation. Meanwhile, the seriously decreased oxygen transfer rate caused by the increased broth viscosity was successfully prevented with OUR-directed continuous ammonium sulfate feeding in the late fermentation phase. The statistical analysis results showed that controlling OUR constantly at 45 ± 2.2 mmol/L/h by the oxygen supply level adjustment and the continuous ammonium sulfate feeding could greatly enhance Q10 production. This OUR-Stat controlling strategy successfully achieved the maximal coenzyme Q10 production (2584 ± 82 mg/L), which was 15.4% higher than that of the control. The highest specific CoQ10 content was 25.9 mg/(g DCW)), and the yield of CoQ10 to glucose consumption was up to 19.37 mg/g. These results demonstrated that the optimal OUR-Stat controlling strategy would be effective and economical for improving the industrial CoQ10 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cluis, C. P., A. M. Burja, and V. J. J. Martin (2007) Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol. 25: 514–521.

    CAS  PubMed  Google Scholar 

  2. Zhu, Z. G., M. X. Sun, W. L. Zhang, W. W. Wang, Y. M. Jin, and C. L. Xie (2017) The efficacy and safety of coenzyme Q10 in Parkinson’s disease: a meta-analysis of randomized controlled trials. Neurol. Sci. 38: 215–224.

    PubMed  Google Scholar 

  3. Park, Y. C., S. J. Kim, J. H. Choi, W. H. Lee, K. M. Park, M. Kawamukai, Y. W. Ryu, and J. H. Seo (2005) Batch and fed-batch production of coenzyme Q10 in recombinant Escherichia coli containing the decaprenyl diphosphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol. 67: 192–196.

    CAS  PubMed  Google Scholar 

  4. Nasoohi, S., L. Simani, F. Khodagholi, S. Nikseresht, M. Faizi, and N. Naderi (2019) Coenzyme Q10 supplementation improves acute outcomes of stroke in rats pretreated with atorvastatin. Nutr. Neurosci. 22: 264–272.

    CAS  PubMed  Google Scholar 

  5. Jeya, M., H. J. Moon, J. L. Lee, I. W. Kim, and J. K. Lee (2010) Current state of coenzyme Q10 production and its applications. Appl. Microbiol. Biotechnol. 85: 1653–1663.

    CAS  PubMed  Google Scholar 

  6. Cluis, C. P., D. Pinel, and V. J. Martin (2012) The production of coenzyme Q10 in microorganisms. Subcell. Biochem. 64: 303–326.

    CAS  PubMed  Google Scholar 

  7. Rivara, M. B., C. K. Yeung, C. Robinson-Cohen, B. R. Phillips, J. Ruzinski, D. Rock, L. Linke, D. D. Shen, T. A. Ikizler, and J. Himmelfarb (2017) Effect of coenzyme Q10 on biomarkers of oxidative stress and cardiac function in hemodialysis patients: the coq10 biomarker trial. Am. J. Kidney Dis. 69: 389–399.

    CAS  PubMed  Google Scholar 

  8. Negida, A., A. Menshawy, G. El Ashal, Y. Elfouly, Y. Hani, Y. Hegazy, S. El Ghonimy, S. Fouda, and Y. Rashad (2016) Coenzyme Q10 for patients with parkinson’s disease: a systematic review and meta-analysis. CNS Neurol. Disord. Drug Targets. 15: 45–53.

    CAS  PubMed  Google Scholar 

  9. Shults, C. W., D. Oakes, K. Kieburtz, M. F. Beal, R. Haas, S. Plumb, J. L. Juncos, J. Nutt, I. Shoulson, J. Carter, K. Kompoliti, J. S. Perlmutter, S. Reich, M. Stern, R. L. Watts, R. Kurlan, E. Molho, M. Harrison, and M. Lew (2002) Effects of coenzyme Q10 in early parkinson disease: evidence of slowing of the functional decline. Arch. Neurol. 59: 1541–1550.

    PubMed  Google Scholar 

  10. Xu, Z., J. Huo, X. Ding, M. Yang, L. Li, J. Dai, K. Hosoe, H. Kubo, M. Mori, K. Higuchi, and J. Sawashita (2017) Coenzyme Q10 Improves lipid metabolism and ameliorates obesity by regulating CaMKII-mediated PDE4 inhibition. Sci. Rep. 7: 8253.

    PubMed  PubMed Central  Google Scholar 

  11. Sarmiento, A., J. Diaz-Castro, M. Pulido-Moran, N. Kajarabille, R. Guisado, and J. J. Ochoa (2016) Coenzyme Q10 supplementation and exercise in healthy humans: a systematic review. Curr. Drug Metab. 17: 345–358.

    CAS  PubMed  Google Scholar 

  12. de Dieu Ndikubwimana, J. and B. H. Lee (2014) Enhanced production techniques, properties and uses of coenzyme Q10. Biotechnol. Lett. 36: 1917–1926.

    PubMed  Google Scholar 

  13. Parmar, S. S., A. Jaiwal, O. P. Dhankher, and P. K. Jaiwal (2015) Coenzyme Q10 production in plants: current status and future prospects. Crit. Rev. Biotechnol. 35: 152–164.

    CAS  PubMed  Google Scholar 

  14. Tian, Y., T. Yue, Y. Yuan, P. K. Soma, and Y. M. Lo (2010) Improvement of cultivation medium for enhanced production of coenzyme Q10 by photosynthetic Rhodospirillum rubrum. Biochem. Eng. J. 51: 160–166.

    CAS  Google Scholar 

  15. Dai, G., L. Miao, T. Sun, Q. Li, D. Xiao, and X. Zhang (2015) Production of coenzyme Q10 by metabolically engineered Escherichia coli. Sheng Wu Gong Cheng Xue Bao. 31: 206–219.

    PubMed  Google Scholar 

  16. Qiu, L., W. Wang, W. Zhong, L. Zhong, J. Fang, X. Li, S. Wu, and J. Chen (2011) Coenzyme Q10 production by Sphingomonas sp. ZUTE03 with novel precursors isolated from tobacco waste in a two-phase conversion system. J. Microbiol. Biotechnol. 21: 494–502.

    CAS  Google Scholar 

  17. Kawamukai, M. (2002) Biosynthesis, bioproduction and novel roles of ubiquinone. J. Biosci. Bioeng. 94: 511–517.

    CAS  PubMed  Google Scholar 

  18. Choi, J. H., Y. W. Ryu, and J. H. Seo (2005) Biotechnological production and applications of coenzyme Q10. Appl. Microbiol. Biotechnol. 68: 9–15.

    CAS  PubMed  Google Scholar 

  19. Lu, W., L. Ye, X. Lv, W. Xie, J. Gu, Z. Chen, Y. Zhu, A. Li, and H. Yu (2015) Identification and elimination of metabolic bottlenecks in the quinone modification pathway for enhanced coenzyme Q10 production in Rhodobacter sphaeroides.Metab. Eng. 29: 208–216.

    CAS  PubMed  Google Scholar 

  20. Zhu, Y., L. Ye, Z. Chen, W. Hu, Y. Shi, J. Chen, C. Wang, Y. Li, W. Li, and H. Yu (2017) Synergic regulation of redox potential and oxygen uptake to enhance production of coenzyme Q10 in Rhodobacter sphaeroides.Enzyme Microb. Technol. 101: 36–43.

    CAS  PubMed  Google Scholar 

  21. Yuan, Y., Y. Tian, and T. Yue (2012) Improvement of coenzyme Q10 production: Mutagenesis induced by high hydrostatic pressure treatment and optimization of fermentation conditions. J. Biomed. Biotechnol. 2: 607329.

    Google Scholar 

  22. Kien, N. B., I. S. Kong, M. G. Lee, and J. K. Kim (2010) Coenzyme Q10 production in a 150-l reactor by a mutant strain Ofrhodobacter sphaeroides. J. Ind. Microbiol. Biot. 37: 521–529.

    CAS  Google Scholar 

  23. Sakato, K., H. Tanaka, and S. Shibata (1992) Agitation-aeration studies on coenzyme Q10 production using Rhodopseudomonas spheroides. Biotechnol. Appl. Biochem. 16: 19–28.

    CAS  Google Scholar 

  24. Bae, Y. H., D. H. Kweon, Y. C. Park, and J. H. Seo (2014) Deletion of the hxk2 gene in Saccharomyces cerevisiae enables mixed sugar fermentation of glucose and galactose in oxygen-limited conditions. Process Biochem. 49: 547–553.

    CAS  Google Scholar 

  25. Johnsson, O., J. Andersson, G. Lidén, C. Johnsson, and T. Gglund (2015) Modelling of the oxygen level response to feed rate perturbations in an industrial scale fermentation process. Process Biochem. 50: 507–516.

    CAS  Google Scholar 

  26. Reis, A., F. Raquel, R. Torres, F. Leite, M. Patrícia, and E. Vidal (2014) Oxygen-limited cellobiose fermentation and the characterization of the cellobiase of an industrial dekkera/brettanomyces bruxellensis strain. SpringerPlus. 3: 38–42.

    PubMed  PubMed Central  Google Scholar 

  27. Yegneswaran, P. K., M. R. Gray, and B. G. Thompson (1991) Effect of dissolved oxygen control on growth and antibiotic production in Streptomyces clavuligerus fermentations. Biotechnol. Prog. 7: 246–250.

    CAS  PubMed  Google Scholar 

  28. Wang, Z. J., H. Y. Wang, Y. Li, J. Chu, M. Huang, and Y. Zhuang (2010) Improved vitamin B12 production by step-wise reduction of oxygen uptake rate under dissolved oxygen limiting level during fermentation process. Bioresour. Technol. 101: 2845–2852.

    CAS  PubMed  Google Scholar 

  29. Zhang, S., J. Chu, and Y. Zhuang (2004) A multi-scale study of industrial fermentation processes and their optimization. Adv. Biochem. Eng. Biotechnol. 87: 97–150.

    CAS  PubMed  Google Scholar 

  30. Palomares, L. A., S. Lopez, and O. T. Ramirez (2004) Utilization of oxygen uptake rate to assess the role of glucose and glutamine in the metabolism of infected insect cell cultures. Biochem. Eng. J. 19: 87–93.

    CAS  Google Scholar 

  31. Feng, Q., L. Mi, L. Li, R. Liu, L. Xie, and H. Tang (2006) Application of “oxygen uptake rate-amino acids” associated mode in controlled-fed perfusion culture. J. Biotechnol. 122: 422–30.

    CAS  PubMed  Google Scholar 

  32. Schafer, S., J. Schrader, and D. Sell (2004) Oxygen uptake rate measurements to monitor the activity of terpene transforming fungi. Process Biochem. 39: 2221–2228.

    CAS  Google Scholar 

  33. Wang, Y., J. Chu, Y. Zhuang, Y. Wang, J. Xia, and S. Zhang (2009) Industrial bioprocess control and optimization in the context of systems biotechnology. Biotechnol. Adv. 27: 989–995.

    CAS  PubMed  Google Scholar 

  34. Ha, S. J., S. Y. Kim, J. H. Seo, M. Jeya, Y. W. Zhang, and T. Ramu (2009) Ca2+ increases the specific coenzyme Q10 content in Agrobacterium tumefaciens. Bioprocess Biosyst. Eng. 32: 697–700.

    CAS  PubMed  Google Scholar 

  35. Zhang, L., L. S. Liu, K. F. Wang, L. Xu, L. M. Zhou, W. S. Wang, C. Li, Z. Xu, T. Shi, H. H. Chen, Y. H. Li, H. Xu, X. L. Yang, Z. C. Zhu, B. Q. Chen, D. Li, G. H. Zhan, S. L. Zhang, L. X. Zhang, and G. Y. Tan (2019) Phosphate limitation increases coenzyme Q10 production in industrial Rhodobacter sphaeroides HY01. Synth. Syst. Biotechnol. 4: 212–219.

    PubMed  PubMed Central  Google Scholar 

  36. Maskow, T., I. Anita, J. Yao, and H. Harms (2008) Observation of non-linear biomass-capacitance correlations: reasons and implications for bioprocess control. Biosens. Bioelectron. 24: 123–128.

    CAS  PubMed  Google Scholar 

  37. Kanda, J. (1995) Determination of ammonium in seawater based on the indophenol reaction with o-phenylphenol (OPP). Water Res. 29: 2746–2750.

    CAS  Google Scholar 

  38. Chen, Y., Z. Wang, J. Chu, Y. Zhuang, S. Zhang, and X. Yu (2013) Significant decrease of broth viscosity and glucose consumption in erythromycin fermentation by dynamic regulation of ammonium sulfate and phosphate. Bioresour. Technol. 134: 173–179.

    CAS  PubMed  Google Scholar 

  39. Liang, J. and J. Yuan (2007) Oxygen transfer model in recombinant Pichia pastoris and its application in biomass estimation. Biotechnol. Lett. 29: 27–35.

    CAS  PubMed  Google Scholar 

  40. Zou, X., H. F. Hang, J. Chu, Y. P. Zhuang, and S. L. Zhang (2009) Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3 scale. Bioresour. Technol. 100: 1406–1412.

    CAS  PubMed  Google Scholar 

  41. Bandaiphet, C. and P. Prasertsan (2006) Effect of aeration and agitation rates and scale-up on oxygen transfer coefficient, kLa in exopolysaccharide production from Enterobacter cloacae WD7. Carbohydr. Polym. 66: 216–228.

    CAS  Google Scholar 

  42. Xia, J. Y., Y. H. Wang, S. L. Zhang, N. Chen, P. Yin, and Y. P. Zhuang (2009) Fluid dynamics investigation of variant impeller combinations by simulation and fermentation experiment. Biochem. Eng. J. 43: 252–260.

    CAS  Google Scholar 

  43. Mahadevan, S., B. Dhandapani, S. Sivaprakasam, and A. B. Mandal (2010) Batch kinetic studies on growth of salt tolerant Pseudomonas aeruginosase creting protease in a biocalorimeter. Biotechnol. Bioprocess Eng. 15: 670–675.

    CAS  Google Scholar 

  44. Dallner, G. and P. J. Sindelar (2000) Regulation of ubiquinone metabolism. Free Radic. Biol. Med. 29: 285–294.

    CAS  PubMed  Google Scholar 

  45. Robertson, D., B. A. McCormack, and G. P. Bolwell (1995) Cell wall polysaccharide biosynthesis and related metabolism in elicitor-stressed cells of French bean (Phaseolus vulgaris L.). Biochem. J. 306: 745–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Franken, J., B. A. Brandt, S. L. Tai, and F. F. Bauer (2013) Biosynthesis of levan, a bacterial extracellular polysaccharide, in the yeast Saccharomyces cerevisiae. PLoS One. 8: e77499.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mulchandani, A., J. H. Luong, and A. Leduy (1988) Batch kinetics of microbial polysaccharide biosynthesis. Biotechnol. Bioeng. 32: 639–646.

    CAS  PubMed  Google Scholar 

  48. Kawamukai, M. (2002) Biosynthesis, bioproduction and novel roles of ubiquinone. J. Biosci. Bioeng. 94: 511–517.

    CAS  PubMed  Google Scholar 

  49. Lu, W., L. Ye, H. Xu, W. Xie, and H. Yu (2014) Enhanced production of coenzyme Q10 by self-regulating the engineered MEP pathway in Rhodobacter sphaeroides.Biotechnol. Bioeng. 111: 761–769.

    CAS  PubMed  Google Scholar 

  50. Ha, S. J., S. Y. Kim, J. H. Seo, H. J. Moon, K. M. Lee, and J. K. Lee (2007) Controlling the sucrose concentration increases Coenzyme Q10 production in fed-batch culture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol. 76: 109–116.

    CAS  PubMed  Google Scholar 

  51. Merten, O. W., G. E. Palfi, and J. Steiner (1986) On-line determination of biochemical/physiological parameters in the fermentation of animal cells in a continuous or discontinuous mode. Adv. Biotechnol. Processes. 6: 111–178.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National key research and development program (Grant No. 2017YFF0204602), the Fundamental research funds for the central universities (No. 222201714024), and innovation and intelligence 111 plan.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingping Zhuang.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZJ., Zhang, X., Wang, P. et al. Oxygen Uptake Rate Controlling Strategy Balanced with Oxygen Supply for Improving Coenzyme Q10 Production by Rhodobacter sphaeroides. Biotechnol Bioproc E 25, 459–469 (2020). https://doi.org/10.1007/s12257-019-0461-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0461-3

Keywords

Navigation