Skip to main content
Log in

Growth and Activity of Caenorhabditis elegans Exposed to Mechanical Vibration During the Embryonic Period

  • Research Paper
  • Biosensors and Biochip
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Mechanical vibration is a key external stimulus of living organisms. In previous studies, mechanical vibration has been found to affect the proliferation and differentiation of cells. However, there have been few reports of similar effects at the organismal scale. In this study, we demonstrated the effect of mechanical vibration on the growth and activity of Caenorhabditis elegans in the embryonic stage. The group of worms that were exposed to mechanical vibration during the embryonic period grew faster than the control group of worms. The growth of all groups was compared by measuring body length. Furthermore, we investigated the mechanical vibration effects in two types of mutants: body wall mechanosensory-abnormal mutants (mec-4(e1339)) and head mechanosensory-defective mutants (trp-4(sy695)). The mec-4(e1339) mutant was not affected by mechanical vibration during growth. On the other hand, the trp-4(sy695) mutant exposed to mechanical vibration showed a difference in growth compared with the control group, similar to wild-type worms. Therefore, mechanical vibration during the early developmental period of C. elegans affects the growth and activity of worms. Additionally, we observed a relationship between the gastrulation period and the mechanosensory system development of the worms. This study will serve as the basis for analyzing the effects of mechanical vibration on the developmental stages of C. elegans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oh, E. S., Y. K. Seo, H. H. Yoon, H. Cho, M. Y. Yoon, and J. K. Park (2011) Effects of sub-sonic vibration on the proliferation and maturation of 3T3-L1 cells. Life Sci. 88: 169–177.

    Article  CAS  Google Scholar 

  2. Ota, T., M. Chiba, and H. Hayashi (2016) Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro. Cytotechnology. 68: 2287–2299.

    Article  CAS  Google Scholar 

  3. Zhang, C., J. Li, L. Zhang, Y. Zhou, W. Hou, H. Quan, X. Li, Y. Chen, and H. Yu (2012) Effects of mechanical vibration on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch. Oral Biol. 57: 1395–1407.

    Article  Google Scholar 

  4. Kanie, K., T. Sakai, Y. Imai, K. Yoshida, A. Sugimoto, H. Makino, H. Kubo, and R. Kato (2019) Effect of mechanical vibration stress in cell culture on human induced pluripotent stem cells. Regen. Ther. 12: 27–35.

    Article  Google Scholar 

  5. Marędziak, M., D. Lewandowski, K. A. Tomaszewski, K. Kubiak, and K. Marycz (2017) The effect of low-magnitude low-frequency vibrations (LMLF) on osteogenic differentiation potential of human adipose derived mesenchymal stem cells. Cell Mol. Bioeng. 10: 549–562.

    Article  Google Scholar 

  6. Vandenberg, L. N., B. W. Pennarola, and M. Levin (2011) Low frequency vibrations disrupt left-right patterning in the Xenopus embryo. PLoS One. 6: e23306.

    Article  CAS  Google Scholar 

  7. Vandenberg, L. N., C. Stevenson, and M. Levin (2012) Low frequency vibrations induce malformations in two aquatic species in a frequency-, waveform-, and direction-specific manner. PLoS One. 7: e51473.

    Article  CAS  Google Scholar 

  8. Kaletta, T. and M. O. Hengartner (2006) Finding function in novel targets: C. elegans as a model organism. Nat. Rev. Drug Discov. 5: 387–398.

    Article  CAS  Google Scholar 

  9. Korta, J., D. A. Clark, C. V. Gabel, L. Mahadevan, and A. D. Samuel (2007) Mechanosensation and mechanical load modulate the locomotory gait of swimming C-elegans. J. Exp. Biol. 210: 2383–2389.

    Article  Google Scholar 

  10. Baek, J. H., P. Cosman, Z. Feng, J. Silver, and W. R. Schafer (2002) Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively. J. Neurosci. Methods. 118: 9–21.

    Article  Google Scholar 

  11. Rezai, P., A. Siddiqui, P. R. Selvaganapathy, and B. P. Gupta (2010) Electrotaxis of Caenorhabditis elegans in a microfluidic environment. Lab. Chip. 10: 220–226.

    Article  CAS  Google Scholar 

  12. Wang, Z., I. Lee, T. J. Jeon, and S. M. Kim (2014) Micro-/nanofluidic device for tunable generation of a concentration gradient: Application to Caenorhabditis elegans chemotaxis. Anal. Bioanal. Chem. 406: 2679–2686.

    Article  CAS  Google Scholar 

  13. The C. elegans Sequencing Consortium (1998) Genome sequence of the nematode C. elegans: A platform for investigating biology. Science. 282: 2012–2018.

    Article  Google Scholar 

  14. Girard, L. R., T. J. Fiedler, T. W. Harris, F. Carvalho, I. Antoshechkin, M. Han, P. W. Sternberg, L. D. Stein, and M. Chalfie (2007) WormBook: The online review of Caenorhabditis elegans biology. Nucleic Acids Res. 35: D472–D475.

    Article  CAS  Google Scholar 

  15. Markaki, M. and N. Tavernarakis (2010) Modeling human diseases in Caenorhabditis elegans. Biotechnol. J. 5: 1261–1276.

    Article  CAS  Google Scholar 

  16. Engleman, E. A., S. N. Katner, and B. S. Neal-Beliveau (2016) Caenorhabditis elegans as a model to study the molecular and genetic mechanisms of drug addiction. Prog. Mol. Biol. Transl. Sci. 137: 229–252.

    Article  Google Scholar 

  17. Bessa, C., P. Maciel, and A. J. Rodrigues (2013) Using C. Elegans to decipher the cellular and molecular mechanisms underlying neurodevelopmental disorders. Mol. Neurobiol. 48: 465–489.

    Article  CAS  Google Scholar 

  18. Sugi, T., E. Okumura, K. Kiso, and R. Igarashi (2016) Nanoscale mechanical stimulation method for quantifying C. elegans mechanosensory behavior and memory. Anal. Sci. 32: 1159–1164.

    Article  CAS  Google Scholar 

  19. Holbrook, R. I. and B. Mortimer (2018) Vibration sensitivity found in Caenorhabditis elegans. J. Exp. Biol. 221: jeb178947.

    Article  Google Scholar 

  20. Teo, E., K. C. Batchu, D. Barardo, L. Xiao, A. Cazenave-Gassiot, N. Tolwinski, M. Wenk, B. Halliwell, and J. Gruber (2018) A novel vibration-induced exercise paradigm improves fitness and lipid metabolism of Caenorhabditis elegans. Sci. Rep. 8: 9420.

  21. O’Hagan, R., M. Chalfie, and M. B. Goodman (2005) The MEC-4 DEG/ENaC channel of Caenorhabditis elegans touch receptor neurons transduces mechanical signals. Nat. Neurosci. 8: 43–50.

    Article  Google Scholar 

  22. Kwon, N., A. B. Hwang, Y. J. You, S. J. V. Lee, and J. H. Je (2015) Dissection of C. elegans behavioral genetics in 3-D environments. Sci. Rep. 5: 9564.

  23. Li, W., Z. Feng, P. W. Sternberg, and X. Z. S. Xu (2006) A C. elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue. Nature. 440: 684–687.

    Article  CAS  Google Scholar 

  24. Wang, Z., T. Han, T. J. Jeon, S. Park, and S. M. Kim (2013) Rapid detection and quantification of bacteria using an integrated micro/nanofluidic device. Sens Actuators B Chem. 178: 683–688.

    Article  CAS  Google Scholar 

  25. Dong, L., R. Jankele, M. Cornaglia, T. Lehnert, P. Gönczy, and M. A. M. Gijs (2018) Integrated microfluidic device for drug studies of early C. elegans embryogenesis. Adv. Sci. 5: 1700751.

    Article  Google Scholar 

  26. Nance, J., J. Y. Lee, and B. Goldstein (2005) Gastrulation in C. elegans. WormBook. http://www.wormbook.org.

    Google Scholar 

  27. Lee, J. Y. and B. Goldstein (2003) Mechanisms of cell positioning during C. elegans gastrulation. Development. 130: 307–320.

    Article  CAS  Google Scholar 

  28. Fickentscher, R., P. Struntz, and M. Weiss (2013) Mechanical cues in the early embryogenesis of Caenorhabditis elegans. Biophys. J. 105: 1805–1811.

    Article  CAS  Google Scholar 

  29. Rohrschneider, M. R. and J. Nance (2009) Polarity and cell fate specification in the control of Caenorhabditis elegans gastrulation. Devl. Dyn. 238: 789–796.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by INHA UNIVERSITY Research Grant.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tae-Joon Jeon or Sun Min Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, S., Ju, J., Kwon, S. et al. Growth and Activity of Caenorhabditis elegans Exposed to Mechanical Vibration During the Embryonic Period. Biotechnol Bioproc E 25, 126–131 (2020). https://doi.org/10.1007/s12257-019-0433-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0433-7

Keywords

Navigation