Skip to main content
Log in

Aptamer-based Fluorescent Assay for Simple and Sensitive Detection of Fipronil in Liquid Eggs

  • Research Paper
  • Nanobiotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In the present study, an aptamer-based fluorescent assay was developed to detect fipronil in liquid eggs, using a carboxyfluorescein (FAM)-labeled aptamer (FAM aptamer) and partially complementary DNA labeled with carboxytetramethylrhodamine (TAMRA cDNA). The fipronil amount in analytical samples was determined by measuring FAM fluorescence at 522 nm. In the absence of fipronil, FAM fluorescence is effectively quenched by fluorescence resonance energy transfer (FRET) phenomenon generated by the hybridized structure of the FAM aptamer and TAMRA cDNA. In contrast, in the presence of fipronil, FAM fluorescence is gradually recovered in a fipronil concentration-dependent manner because the FAM aptamer has a stronger affinity for fipronil than for TAMRA cDNA. The proposed analytical method for fipronil involves a simple one-step procedure of mixing the sample solution without any washing step, and the results can be obtained in approximately 30 min. Under optimized conditions, the developed assay showed a linear response to fipronil in the egg sample in the range of 25-300 ppb with a detection limit of 53.8 ppb (0.068 mg/kg) and recovery rates in the range of 94.7-114.4%. Additionally, the assay selectivity for fipronil was investigated against eight pesticides, and it showed good specificity for fipronil. Compared with conventional liquid chromatography-mass spectrometry (LC-MS), the proposed method provides a simple, easy, and fast method to detect fipronil in egg samples without requiring bulky and expensive instruments and complicated and laborious processes. We believe this detection method could be a promising platform for fipronil detection in real food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomlin, C. D. S. (2006) The Pesticide Manual: A World Compendium. 14th ed., pp. 462–464. British Crop Protection Council, Hampshire, UK.

    Google Scholar 

  2. Li, P. and G. Akk (2008) The insecticide fipronil and its metabolite fipronil sulphone inhibit the rat a1β2γ2L GABAA receptor. Br. J. Pharmacol. 155: 783–794.

    Article  CAS  Google Scholar 

  3. Tingle, C. C., J. A. Rother, C. F. Dewhurst, S. Lauer, and W. J. King (2003) Fipronil: environmental fate, ecotoxicology, and human health concerns. Rev. Environ. Contam. Toxicol. 176: 1–66.

    PubMed  Google Scholar 

  4. Hadjmohammadi, M. R., S. M. Nikou, and K. Kamel (2006) Determination of fipronil residue in soil and water in the rice fields in north of Iran by RP-HPLC method. Acta Chim. Slov. 53: 517–520.

    CAS  Google Scholar 

  5. Dinham, B. (2000) Poisoning an island? Locust control in Madagascar. Pestic. News. 48: 3–6.

    Google Scholar 

  6. Lee, S. J., P. Mulay, B. Diebolt-Brown, M. J. Lackovic, L. N. Mehler, J. Beckman, J. Waltz, J. B. Prado, Y. A. Mitchell, S. A. Higgins, A. Schwartz, and G. M. Calvert (2010) Acute illnesses associated with exposure to fipronil-surveillance data from 11 states in the United States, 2001-2007. Clin. Toxic. 48: 737–744.

    Article  Google Scholar 

  7. US Environmental Protection Agency (2011) Fipronil Summary Document Registration Review: Initial Docket June 2011. https://www.regulations.gov/document?D=EPA-HQ-OPP-2011-0448-0003.

    Google Scholar 

  8. Reuters, Contaminated eggs found in 40 countries as EU ministers meet: DPA. https://www.reuters.com/article/us-europe-ggs/contaminated-eggsfound-in-40-countries-as-eu-ministers-meet-dpa-idUSKCN1BG0LJ/.

  9. FAO/WHO 2001, Report of the 2001 JMPR FAO/WHO Meeting of Experts. http://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Reports_1991-2006/REPORT2001.pdf.

    Google Scholar 

  10. Guo, Q., S. Zhao, J. Zhang, K. Qi, Z. Du, and B. Shao (2018) Determination of fipronil and its metabolites in chicken egg, muscle and cake by a modified QuEChERS method coupled with LC-MS/MS. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 35: 1543–1552.

    Article  CAS  Google Scholar 

  11. Vasylieva, N., K. C. Ahn, B. Barnych, S. J. Gee, and B. D. Hammock (2015) Development of an immunoassay for the detection of the phenylpyrazole insecticide fipronil. Environ. Sci. Technol. 49: 10038–10047.

    Article  CAS  Google Scholar 

  12. Tu, Q., M. E. Hickey, T. Yang, S. Gao, Q. Zhang, Y. Qu, X. Du, J. Wang, and L. He (2019) A simple and rapid method for detecting the pesticide fipronil on egg shells and in liquid eggs by Raman microscopy. Food Control. 96: 16–21.

    Article  CAS  Google Scholar 

  13. Cho, E. J., J. W. Lee, and A. D. Ellington (2009) Applications of aptamers as sensors. Annu. Rev. Anal. Chem. 2: 241–264.

    Article  CAS  Google Scholar 

  14. Xiao, Y., A. A. Lubin, A. J. Heeger, and K. W. Plaxco (2005) Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Ed. Engl. 44: 5456–5459.

    Article  CAS  Google Scholar 

  15. Tong, P., W. W. Zhao, L. Zhang, J. J. Xu, and H. Y. Chen (2012) Double-probe signal enhancing strategy for toxin aptasensing based on rolling circle amplification. Biosens. Bioelectron. 33: 146–151.

    Article  CAS  Google Scholar 

  16. Shim, W. B., H. Mun, H. A. Joung, J. A. Ofori, D. H. Chung, and M. G. Kim (2014) Chemiluminescence competitive aptamer assay for the detection of aflatoxin B1 in corn samples. Food Control. 36: 30–35.

    Article  CAS  Google Scholar 

  17. Farzin, L., M. Shamsipur, and S. Sheibani (2017) A review: Aptamer-based analytical strategies using the nanomaterials for environmental and human monitoring of toxic heavy metals. Talanta. 174: 619–627.

    Article  CAS  Google Scholar 

  18. Mehlhorn, A., P. Rahimi, and Y. Joseph (2018) Aptamer-based biosensors for antibiotic detection: a review. Biosensors. 8: 54.

    Article  CAS  Google Scholar 

  19. Hong, K. L. and L. J. Sooter (2018) In vitro selection of a single-stranded DNA molecular recognition element against the pesticide fipronil and sensitive detection in river water. Int. J. Mol. Sci. 19: 85.

    Article  Google Scholar 

  20. Hussain, S. A. (2009) An introduction to fluorescence resonance energy transfer (FRET). arXiv. arXiv:0908.1815.

    Google Scholar 

  21. Clegg, R. M. (1995) Fluorescence resonance energy transfer. Curr. Opin. Biotechnol. 6: 103–110.

    Article  CAS  Google Scholar 

  22. Nagatoishi, S., T. Nojima, E. Galezowska, B. Juskowiak, and S. Takenaka (2006) Quadruplex-based FRET probes with the thrombin-binding aptamer (TBA) sequence designed for the efficient fluorometric detection of the potassium in. Chembiochem. 7: 1730–1737.

    Article  CAS  Google Scholar 

  23. Zhu, Y., Y. Cai, L. Xu, L. Zheng, L. Wang, B. Qi, and C. Xu (2015) Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A. ACS Appl. Mater. Interfaces. 7: 7492–7496.

    Article  CAS  Google Scholar 

  24. Shi, J., F. Tian, J. Lyu, and M. Yang (2015) Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J. Mater. Chem. B. 3: 6989–7005.

    Article  CAS  Google Scholar 

  25. Shaobo, C., S. Xu, H. Song, W. Xu, X. Chen, D. Zhou, Z. Yin, and W. Han (2015) Highly sensitive and selective detection of mercury ions based on up-conversion FRET from NaYF 4: Yb3+/Er3+ nanophosphors to CdTe quantum dots. RSC Adv. 5: 99099–99106.

    Article  Google Scholar 

  26. Goud, K. Y., A. Sharma, A. Hayat, G. Catanante, K. V. Gobi, A. M. Gurban, and J. L. Marty (2016) Tetramethyl-6-carboxyrhodamine quenching-based aptasensing platform for aflatoxin B1: Analytical performance comparison of two aptamers. Anal. Biochem. 508: 19–24.

    Article  CAS  Google Scholar 

  27. Sharma, A., G. Catanante, A. Hayat, G. Istamboulie, I. B. Rejeb, S. Bhand, and J. L. Marty (2016) Development of structure switching aptamer assay for detection of aflatoxin M1 in milk sample. Talanta. 158: 35–41.

    Article  CAS  Google Scholar 

  28. Yüce, M. and H. Kurt (2017) How to make nanobiosensors: Surface modification and characterisation of nanomaterials for biosensing applications. RSC Adv. 7: 49386–49403.

    Article  Google Scholar 

  29. Anastassiades, M., S. J. Lehotay, D. Stajnbaher, and F. J. Schenck (2003) Fast and easy multiresidue method employing acetonitrile extraction/partitioning and ‘dispersive solid-phase extraction’ for the determination of pesticide residues in produce. J. AOAC. Int. 86: 412–431.

    Article  CAS  Google Scholar 

  30. Zhou, X., L. Wang, G. Shen, D. Zhang, J. Xie, A. Mamut, W. Huang, and S. Zhou (2018) Colorimetric determination of ofloxacin using unmodified aptamers and the aggregation of gold nanoparticles. Mikrochim. Acta. 185: 355.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the main research program (E0192102-02) of the Korea Food Research Institute funded by the Ministry of Science and ICT of South Korea. The authors declare no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Ah Woo.

Additional information

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, TY., Lim, J.W., Lim, MC. et al. Aptamer-based Fluorescent Assay for Simple and Sensitive Detection of Fipronil in Liquid Eggs. Biotechnol Bioproc E 25, 246–254 (2020). https://doi.org/10.1007/s12257-019-0358-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0358-1

Keywords

Navigation