Skip to main content
Log in

In vitro Screening of Traditional Chinese Medicines Compounds Derived with Anti-encephalomyocarditis Virus Activities

  • Research Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The prevalence of encephalomyocarditis virus has brought about enormous financial losses to the swine industry throughout the globe. Chinese herbal medicines have potential antiviral activity which has been proved. Fifteen traditional Chinese medicine compounds were screened for anti-encephalomyocarditis virus (EMCV) activity. The maximum non-toxic concentration (MNTC), cytotoxic concentration 50% (CC50), maximal inhibition rate (MIR), and effective concentration 50% (EC50) against EMCV were measured using MTT and antiviral assays on baby hamster Syrian kidney (BHK-21) cells. Two of the compounds, baicalin and matrine, with MIR > 50% and selective index (SI) > 3 were chosen for further virus load analysis. The results showed that the MIRs of baicalin and matrine were higher than that of positive control ribavirin while the SI values were much smaller than that of the control. Real-time quantitative PCR analysis demonstrated that baicalin and matrine have significant (p < 0.05) anti-EMCV activity compared to the control. It is a baseline study concluded that baicalin and matrine needs further development as an independent drugs or part of a Chinese medicine prescription for the treatment of EMCV infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Koenen, R., K. De Clercq, J. Lefebvre, and R. Strobbe (1994) Reproductive failure in sows following experimental infection with a Belgian EMCV isolate. Vet. Microbiol. 39: 111–116.

    Article  CAS  PubMed  Google Scholar 

  2. Gelmetti, D., A. Meroni, E. Brocchi, R. Koenen, and G. Cammarata (2006) Pathogenesis of encephalomyocarditis experimental infection in young piglets: a potential animal model to study viral myocarditis. Vet. Res. 37: 15–23.

    Article  PubMed  Google Scholar 

  3. Oberste, M. S., E. Gotuzzo, P. Blair, W. A. Nix, T. G. Ksiazek, J. A. Comer, P. Rollin, C. S. Goldsmith, J. Olson, and T. J. Kochel (2009) Human febrile illness caused by encephalomyocarditis virus infection, Peru. Emerg. Infect. Dis. 15: 640–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vansteenkiste, K., T. Van Limbergen, R. Decaluwé, M. Tignon, B. Cay, and D. Maes (2016) Clinical problems due to encephalomyocarditis virus infections in two pig herds. Porcine Health Manag. 2: 19.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Feng, R., J. Wei, H. Zhang, J. Fan, X. Li, D. Wang, J. Xie, Z. Qiao, M. Li, J. Bai, and Z. Ma (2015) National serosurvey of encephalomyocarditis virus in healthy people and pigs in China. Arch. Virol. 160: 2957–2964.

    Article  CAS  PubMed  Google Scholar 

  6. Ge, X., D. Zhao, C. Liu, R. Wang, X. Guo, and H. Yang (2010) Seroprevalence of encephalomyocarditis virus in intensive pig farms in China. Vet. Rec. 166: 145–146.

    Article  CAS  PubMed  Google Scholar 

  7. LaRue, R., S. Myers, L. Brewer, D. P. Shaw, C. Brown, B. S. Seal, and M. K. Njenga (2003) A wild-type porcine encephalomyocarditis virus containing a short poly(c) tract is pathogenic to mice, pigs, and cynomolgus macaques. J. Virol. 77: 9136–9146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu, H., Q. Yan, B. Zhao, J. Luo, C. Wang, Y. Du, J. Yan, and H. He (2013) Isolation, molecular characterization, and phylogenetic analysis of encephalomyocarditis virus from South China tigers in China. Infect. Genet. Evol. 19: 240–243.

    Article  CAS  PubMed  Google Scholar 

  9. Cardeti, G., V. Mariano, C. Eleni, M. Aloisi, G. Grifoni, S. Sittinieri, G. Dante, V. Antognetti, E. A. Foglia, A. Cersini, and A. Nardi (2016) Encephalomyocarditis virus infection in Macaca sylvanus and Hystrix cristata from an Italian rescue centre for wild and exotic animals. Virol J. 13: 193.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Luo, Y. K., L. Liang, Q. H. Tang, L. Zhou, L. J. Shi, Y. Y. Cong, W. C. Lin, and S. J. Cui (2017) Isolation and characterization of encephalomyocarditis virus from dogs in China. Sci. Rep. 7: 438.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Vyshemirskii, O. I., A. A. Agumava, A. A. Kalaydzyan, A. V. Leontyuk, J. H. Kuhn, A. M. Shchetinin, T. V. Vishnevskaya, A. A. Eremyan, and S. V. Alkhovsky (2018) Isolation and genetic characterization of encephalomyocarditis virus J. from a deceased captive hamadryas baboon. Virus Res. 244: 164–172.

    Article  CAS  PubMed  Google Scholar 

  12. Doysabas, K. C. C., M. Oba, M. Furuta, K. Iida, T. Omatsu, T. Furuya, T. Okada, K. Sutummaporn, H. Shimoda, M. L. Wong, C. H. Wu, Y. Ohmori, R. Kobayashi, Y. Hengjan, K. Yonemitsu, R. Kuwata, Y. K. Kim, S. H. Han, J. H. Sohn, S. H. Han, K. Suzuki, J. Kimura, K. Maeda, H. S. Oh, D. Endoh, T. Mizutani, and E. Hondo (2019) Encephalomyocarditis virus is potentially derived from eastern bent-wing bats living in East Asian countries. Virus Res. 259: 62–67.

    Article  CAS  PubMed  Google Scholar 

  13. Mclelland, D. J., P. D. Kirkland, K. A. Rose, R. J. Dixon, and N. Smith (2005) Serologic responses of barbary sheep (ammotragus lervia), Indian antelope (antilope cervicapra), wallaroos (macropus robustus), and chimpanzees (pan troglodytes) to an inactivated encephalomyocarditis virus vaccine. J Zoo Wildlife Med. 36: 69–73.

    Article  Google Scholar 

  14. Hunter, P., S. P. Swanepoel, J. J. Esterhuysen, J. P. Raatli, R. G. Bengis, and J. J. van der Lugt (1998) The efficacy of an experimental oil-adjuvanted encephalomyocarditis vaccine in elephants, mice and pigs. Vaccine. 16: 55–61.

    Article  CAS  PubMed  Google Scholar 

  15. Jeoung, H. Y., B. H. Shin, W. Jeong, M. H. Lee, W. H. Lee, and D. J. An (2012) A novel vaccine combined with an alum adjuvant for porcine encephalomyocarditis virus (EMCV)-induced reproductive failure in pregnant sows. Res. Vet. Sci. 93: 1508–1511.

    Article  CAS  PubMed  Google Scholar 

  16. Mukhtar, M., M. Arshad, M. Ahmad, R. J. Pomerantz, B. Wigdahl, and Z. Parveen (2008) Antiviral potentials of medicinal plants. Virus Res. 131: 111–120.

    Article  CAS  PubMed  Google Scholar 

  17. Oguntibeju, O. O. (2018) Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J. Inflamm. Res. 11: 307–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang, Q., H. Kuang, Y. Su, Y. Sun, J. Feng, R. Guo, and K. Chan (2013) Naturally derived anti-inflammatory compounds from Chinese medicinal plants. J. Ethnopharmacol. 146: 9–39.

    Article  CAS  PubMed  Google Scholar 

  19. Wan, Q., H. Wang, X. Han, Y. Lin, Y. Yang, L. Gu, J. Zhao, L. Wang, L. Huang, Y. Li, and Y. Yang (2014) Baicalin inhibits TLR7/MYD88 signaling pathway activation to suppress lung inflammation in mice infected with influenza A virus. Biomed. Rep. 2: 437–441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, H., C. Zhong, Q. Wang, W. Chen, and Y. Yuan (2019) Curcumin is an APE1 redox inhibitor and exhibits an antiviral activity against KSHV replication and pathogenesis. Antiviral Res. 167: 98–103.

    Article  CAS  PubMed  Google Scholar 

  21. Shirasago, Y., Y. Inamori, T. Suzuki, I. Tanida, T. Suzuki, K. Sugiyama, T. Wakita, K. Hanada, and M. Fukasawa (2019) Inhibition mechanisms of Hepatitis C Virus infection by caffeic acid and tannic acid. Biol. Pharm. Bull. 42: 770–777.

    Article  CAS  PubMed  Google Scholar 

  22. Ding, Y., Z. Cao, L. Cao, G. Ding, Z. Wang, and W. Xiao (2017) Antiviral activity of chlorogenic acid against influenza A (H1N1/ H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 7: 45723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, C. C., C. Y. Fang, Y. J. Cheng, H. Y. Hsu, S. P. Chou, S. Y. Huang, C. H. Tsai, and J. Y. Chen (2017) Inhibition of Epstein-Barr virus reactivation by the flavonoid apigenin. J. Biomed. Sci. 24:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ding, Y., N. Li, J. Sun, L. Zhang, J. Guo, X. Hao, and Y. Sun (2019) Correction to: Oxymatrine inhibits Bocavirus MVC replication, reduces viral gene expression and decreases apoptosis induced by viral infection. Virol Sin. 34: 729.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang, R. L., C. C. Chen, Y. L. Huang, D. J. Hsieh, C. P. Hu, C. F. Chen, and C. Chang (1996) Osthole increases glycosylation of hepatitis B surface antigen and suppresses the secretion of hepatitis B virus in vitro. Hepatology. 24: 508–515.

    CAS  PubMed  Google Scholar 

  26. Lin, Y. J., C. C. Lai, C. H. Lai, S. C. Sue, C. W. Lin, C. H. Hung, T. H. Lin, W. Y. Hsu, S. M. Huang, Y. L. Hung, N. Tien, X. Liu, C. L. Chen, and F. J. Tsai (2013) Inhibition of enterovirus 71 infections and viral IRES activity by fructus gardeniae and geniposide. Eur. J. Med. Chem. 62: 206–213.

    Article  CAS  PubMed  Google Scholar 

  27. Huang, T. I., H. Chuang, Y. C. Liang, H. H. Lin, J. C. Horng, Y. C. Kuo, C. W. Chen, F. Y. Tsai, S. C. Yen, S. C. Chou, and M. H. Hsu (2015) Design, synthesis, and bioevaluation of paeonol derivatives as potential anti-HBV agents. Eur. J. Med. Chem. 90: 428–435.

    Article  CAS  PubMed  Google Scholar 

  28. Zigolo, M. A., M. Salinas, L. Alché, A. Baldessari, and G. G. Linares (2018) Chemoenzymatic synthesis of new derivatives of glycyrrhetinic acid with antiviral activity. Molecular docking study. Bioorg. Chem. 78: 210–219.

    Article  CAS  PubMed  Google Scholar 

  29. Sakai-Sugino, K., J. Uematsu, M. Kamada, H. Taniguchi, S. Suzuki, Y. Yoshimi, S. Kihira, H. Yamamoto, M. Kawano, M. Tsurudome, M. O'Brien, M. Itoh, and H. Komada (2017) Glycyrrhizin inhibits human parainfluenza virus type 2 replication by the inhibition of genome RNA, mRNA and protein syntheses. Drug Discov. Ther 11: 246–252.

    Article  CAS  PubMed  Google Scholar 

  30. Sun, Y., M. Song, L. Niu, X. Bai, N. Sun, X. Zhao, J. Jiang, J. He, and H. Li (2013) Antiviral effects of the constituents derived from Chinese herb medicines on infectious bursal disease virus. Pharm. Biol. 51: 1137–1143.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, Y., L. Niu, M. Song, X. Zhao, N. Sun, J. He, C. Wu, J. Jiang, Y. Bai, J. Guo, and H. Li (2014) Screening compounds of Chinese medicinal herbs anti-Marek's disease virus. Pharm. Biol. 52: 841–847.

    Article  CAS  PubMed  Google Scholar 

  32. Cheng, J., N. Sun, X. Zhao, L. Niu, M. Song, Y. Sun, J. Jiang, J. Guo, Y. Bai, J. He, and H. Li (2013) In vitro screening for compounds derived from traditional chinese medicines with antiviral activities against porcine reproductive and respiratory syndrome virus. J. Microbiol. Biotechnol. 23: 1076–1083.

    Article  CAS  PubMed  Google Scholar 

  33. Sun, N., P. Sun, H. Lv, Y. Sun, J. Guo, Z. Wang, T. Luo, S. Wang, and H. Li (2016) Matrine displayed antiviral activity in porcine alveolar macrophages co-infected by porcine reproductive and respiratory syndrome virus and porcine circovirus type 2. Sci. Rep. 6: 24401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chavez, J. H., P. C. Leal, R. A. Yunes, R. J. Nunes, C. R. M. Barardi, A. R. Pinto, C. M. O. Simöes, and C. R. Zanetti (2006) Evaluation of antiviral activity of phenolic compounds and derivatives against rabies virus. Vet. Microbiol. 116: 53–59.

    Article  CAS  PubMed  Google Scholar 

  35. Benassi-Zanqueta, E., C. F. Marques, L. M. Valone, B. L. Pellegrini, A. Bauermeister, I. C. P. Ferreira, N. P. Lopes, C. V. Nakamura, B. P. D. Filho, M. R. M. Natali, and T. Ueda-Nakamura (2018) Evaluation of anti-HSV-1 activity and toxicity of hydroethanolic extract of Tanacetum partheniums (L.) Sch.Bip. (Asteraceae). Phytomedicine. 55: 249–254.

    Article  PubMed  CAS  Google Scholar 

  36. Sun, N., T. Yu, J. X. Zhao, Y. G. Sun, J. B. Jiang, Z. B. Duan, W. K. Wang, Y. L. Hu, H. M. Lei, and H. Q. Li (2015) Antiviral activities of natural compounds derived from traditional chinese medicines against porcine circovirus type 2 (pcv2). Biotechnol. Bioprocess Eng. 20: 180–187.

    Article  CAS  Google Scholar 

  37. Jia, Y., L. Chen, S. Guo, and Y. Li (2019) Baicalin induced colon cancer cells apoptosis through miR-217/DKKl-mediated inhibition of Wnt signaling pathway. Mol. Biol. Rep. 46: 1693–1700.

    Article  CAS  PubMed  Google Scholar 

  38. Wang, C., Y. Song, X. Wang, R. Mao, and L. Song (2018) Baicalin ameliorates collagen-induced arthritis through the suppression of janus kinase J. (JAKl)/signal transducer and activator of transcription 3 (STAT3) signaling in mice. Med. Sci. Monit. 24: 9213–9222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jin, X., M. Y. Liu, D. F. Zhang, X. Zhong, K. Du, P. Qian, W. F. Yao, H. Gao, and M. J. Wei (2019) Baicalin mitigates cognitive impairment and protects neurons from microglia-mediated neuroinflammation via suppressing NLRP3 inflammasomes and TLR4/NF-KB signaling pathway. CNS Neurosci. Ther. 25: 575–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang, G., Y. Gao, H. Wang, X. Niu, and J. Wang (2018) Baicalin weakens Staphylococcus aureus pathogenicity by targeting sortase B. Front Cell Infect. Microbiol. 8: 418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oo, A., B. T. Teoh, S. S. Sam, S. A. Bakar, and K. Zandi (2019) Baicalein and baicalin as zika virus inhibitors. Arch. Virol. 164: 585–593.

    Article  CAS  PubMed  Google Scholar 

  42. Pang, P., K. Zheng, S. Wu, H. Xu, L. Deng, Y. Shi, and X. Chen (2018) Baicalin downregulates RLRs signaling pathway to control influenza A virus infection and improve the prognosis. Evid. Based Complement Alternat. Med. 2018: 4923062.

    PubMed  PubMed Central  Google Scholar 

  43. Huang, H., W. Zhou, H. Zhu, P. Zhou, and X. Shi (2017) Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs. Toxicol. Appl. Pharmacol. 323: 36–43.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, Y., W. Yuan, Y. Yang, F. Yao, K. Ming, and J. Liu (2018) Inhibition mechanisms of baicalin and its phospholipid complex against DHAV-1 replication. Poult. Sci. 97: 3816–3825.

    Article  CAS  PubMed  Google Scholar 

  45. Khan, S., I. Lew, F. Wu, L. Fritts, K. A. Fontaine, S. Tornar, M. Trapecar, H. M. Shehata, M. Ott, C. J. Miller, and S. Sanjabi (2019) Low expression of RNA sensors impacts Zika virus infection in the lower female reproductive tract. Nat. Commun.10: 4344.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hen, J., R. Zhang, J. Lan, S. Lin, P. Li, J. Gao, Y. Wang, Z. J. Xie, F. C. Li, and S. J. Jiang (2019) IGF2BP1 significantly enhances translation efficiency of Duck Hepatitis A Virus type 1 without affecting viral replication. Biomolecules. 9: 594.

    Article  CAS  Google Scholar 

  47. Zhang, C., N. Li, and F. Niu (2019) Baicalein triazole prevents respiratory tract infection by RSV through suppression of oxidative damage. Microb. Pathog. 131: 227–233.

    Article  CAS  PubMed  Google Scholar 

  48. Gu, Y. Y., M. H. Chen, B. H. May, X. Z. Liao, J. H. Liu, L. T. Tao, D. Man-Yuen Sze, A. L. Zhang, and S. L. Mo (2018) Matrine induces apoptosis in multiple colorectal cancer cell lines in vitro and inhibits tumour growth with minimum side effects in vivo via Bcl-2 and Caspase-3. Phytomedicine. 51: 214–225.

    Article  CAS  PubMed  Google Scholar 

  49. Wei, R., J. Cao, and S. Yao (2018) Matrine promotes liver cancer cell apoptosis by inhibiting mitophagy and PINK1/Parkin pathways. Cell Stress Chaperones. 23: 1295–1309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jiang, K., S. Guo, J. Yang, J. Liu, A. Shaukat, G. Zhao, H. Wu, and G. Deng (2019) Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-KB activation. Int. Immunopharmacol. 70: 201–207.

    Article  CAS  PubMed  Google Scholar 

  51. Yu, X., H. J. Seow, H. Wang, D. Anthony, S. Bozinovski, L. Lin, J. M. Ye, and R. Vlahos (2019) Matrine reduces cigarette smoke-induced airway neutrophilic inflammation by enhancing neutrophil apoptosis. Clin. Sci. 133: 551–564.

    Article  CAS  PubMed  Google Scholar 

  52. Zou, Y., Q. Li, D. Liu, J. Li, Q. Cai, C. Li, Q. Zhao, and W. Xu (2017) Therapeutic effects of matrine derivate MASM in mice with collagen-induced arthritis and on fibroblast-like synoviocytes. Sci. Rep. 7: 2454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Li, Y. H., Z. Y. Wu, S. Tang, X. Zhang, Y. X. Wang, J. D. Jiang, Z. G. Peng, and D. Q. Song (2017) Evolution of matrinic ethanol derivatives as anti-HCV agents from matrine skeleton. Bioorg. Med. Chem. Lett. 27: 1962–1966.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, Y. B., D. Luo, L. Yang, W. Cheng, L. J. He, G. K. Kuang, M. M. Li, Y. L. Li, and G. C. Wang (2019) Matrine-type alkaloids from the roots of sophora flavescens and their antiviral activities against the hepatitis B virus. J. Nat. Prod. 81: 2259–2265.

    Article  CAS  Google Scholar 

  55. Pan, Q. M., Y. H. Li, J. Hua, F. P. Huang, H. S. Wang, and D. Liang (2015) Antiviral matrine-type alkaloids from the rhizomes of sophora tonkinensis. J. Nat. Prod. 78: 1683–1688.

    Article  CAS  PubMed  Google Scholar 

  56. Bao, J., T. Sun, Y. Yue, and S. Xiong (2019) Macrophage NLRP3 inflammasome activated by CVB3 capsid proteins contributes to the development of viral myocarditis. Mol. Immunol. 114: 41–48.

    Article  CAS  PubMed  Google Scholar 

  57. Francisco, E., M. Sutliar, M. Gale, A. B. Rosenfeld, and V. R. Racaniello (2019) Cell-type specificity and functional redundancy of RIG-I-like receptors in innate immune sensing of Coxsackievirus B3 and encephalomyocarditis virus. Virology. 528: 7–18.

    Article  CAS  PubMed  Google Scholar 

  58. Sun, P., N. Sun, W. Yin, Y. Sun, K. Fan, J. Guo, A. Khan, Y. He, and H. Li (2019) Matrine inhibits IL-1β secretion in primary porcine alveolar macrophages through the MyD88/NF-KB pathway and NLRP3 inflammasome. Vet. Res. 50: 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (grant number 2017YFD0501500) and the National Natural Science Foundation of China (grant number 31702285).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongquan Li or Na Sun.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclosure statement

These experiments were conducted with compliance with the current laws of China. The authors have no conflict of interest in the research. Neither ethical approval nor informed consent was required for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Xu, Y., Khan, A. et al. In vitro Screening of Traditional Chinese Medicines Compounds Derived with Anti-encephalomyocarditis Virus Activities. Biotechnol Bioproc E 25, 181–189 (2020). https://doi.org/10.1007/s12257-019-0354-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0354-5

Keywords

Navigation