Skip to main content
Log in

Inhibition of 3T3-L1 Adipocyte Differentiation by D-allulose

  • Research Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Obesity is a serious problem in modern society and its prevalence continues to increase worldwide, resulting in metabolic disorder related diseases. D-allulose, a sugar substitute, boasts a near-zero calorie value and regulates lipid accumulation. However, the molecular mechanism of D-allulose at the cellular level has not been fully elucidated. In this study, we investigated the effect of D-allulose on 3T3-L1 adipocyte differentiation. D-allulose inhibits differentiation of 3T3-L1 preadipocytes into mature adipocytes, as examined by Oil Red O staining. The mRNA levels of genes involved in lipogenesis, including fatty acid synthase (FAS) and adipocyte fatty acid-binding protein (aP2), were significantly decreased and intracellular triglyceride (TG) content was markedly reduced with D-allulose treatment. We also monitored the activity of major adipogenic transcription factors–CREB, SREBP-1c, and PPARψ–using 3T3-L1 reporter cell lines that were constructed to secrete Gaussia luciferase upon binding of a transcription factor to its DNA binding element. Collectively, D-allulose suppresses adipocyte differentiation and lipid accumulation through regulating adipogenic transcription factors and may have anti-obesity potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atawia, R. T., K. L. Bunch, H. A. Toque, R. B. Caldwell, and R. W. Caldwell (2019) Mechanisms of obesity-induced metabolic and vascular dysfunctions. Front Biosci. (Landmark Ed). 24: 890–934.

    Article  Google Scholar 

  2. Chehab, F. F. (2008) Obesity and lipodystrophy—where do the circles intersect? Endocrinology. 149: 925–934.

    Article  CAS  Google Scholar 

  3. Jo, J., O. Gavrilova, S. Pack, W. Jou, S. Mullen, A. E. Sumner, S. W. Cushman, and V. Periwal (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput. Biol. 5: e1000324.

    Article  Google Scholar 

  4. Fruhbeck, G., J. Gomez-Ambrosi, F. J. Muruzabal, and M. A. Burrell (2001) The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am. J. Physiol. Endocrinol. Metab. 280: E827–847.

    Article  CAS  Google Scholar 

  5. Gregoire, F. M., C. M. Smas, and H. S. Sul (1998) Understanding adipocyte differentiation. Physiol. Rev. 78: 783–809.

    Article  CAS  Google Scholar 

  6. Choi, K., B. Ghaddar, C. Moya, H. Shi, G. V. Sridharan, K. Lee, and A. Jayaraman (2014) Analysis of transcription factor network underlying 3T3-L1 adipocyte differentiation. PLoS One. 9: e100177.

    Article  Google Scholar 

  7. Reusch, J. E. B., L. A. Colton, and D. J. Klemm (2000) CREB activation induces adipogenesis in 3T3-L1 cells. Mol. Cell. Biol. 20: 1008–1020.

    Article  CAS  Google Scholar 

  8. Kim, J. B., H. M. Wright, M. Wright, and B. M. Spiegelman (1998) ADD1/SREBP1 activates PPARgamma through the production of endogenous ligand. Proc. Natl. Acad. Sci. USA. 95: 4333–4337.

    Article  CAS  Google Scholar 

  9. Kuhajda, F. P. (2006) Fatty acid synthase and cancer: new application of an old pathway. Cancer Res. 66: 5977–5980.

    Article  CAS  Google Scholar 

  10. Furuhashi, M. and G. S. Hotamisligil (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7: 489–503.

    Article  CAS  Google Scholar 

  11. Mozaffarian, D., T. Hao, E. B. Rimm, W. C. Willett, and F. B. Hu (2011) Changes in diet and lifestyle and long-term weight gain in women and men. N. Engl. J. Med. 364: 2392–2404.

    Article  CAS  Google Scholar 

  12. Te Morenga, L., S. Mallard, and J. Mann (2012) Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 346: e7492.

    Article  Google Scholar 

  13. Tseng, Y. H., A. M. Cypess, and C. R. Kahn (2010) Cellular bioenergetics as a target for obesity therapy. Nat. Rev. Drug Discov. 9: 465–482.

    Article  CAS  Google Scholar 

  14. Kang, C. H., Y. J. Kwon, and J. S. So (2014) Anti-adipogenic effects of Corni fructus in 3T3-L1 preadipocytes. Biotechnol. Bioprocess Eng. 19: 52–57.

    Article  CAS  Google Scholar 

  15. Jang, M. H., N. H. Kang, S. Mukherjee, and J. W. Yun (2018) Theobromine, a methylxanthine in cocoa bean, stimulates thermogenesis by inducing white fat browning and activating brown adipocytes. Biotechnol. Bioprocess Eng. 23: 617–626.

    Article  CAS  Google Scholar 

  16. Goh, S., D. Kim, M. H. Choi, H. J. Shin, and S. Kwon (2019) Effects of bamboo stem extracts on adipogenic differentiation and lipid metabolism regulating genes. Biotechnol. Bioprocess Eng. 24: 454–463.

    Article  CAS  Google Scholar 

  17. Matsuo, T., H. Suzuki, M. Hashiguchi, and K. Izumori (2002) Dpsicose is a rare sugar that provides no energy to growing rats. J. Nutr. Sci. Vitaminol. 48: 77–80.

    Article  CAS  Google Scholar 

  18. Kimoto-Nira, H., N. Moriya, S. Hayakawa, K. Kuramasu, H. Ohmori, S. Yamasaki, and M. Ogawa (2017) Effects of rare sugar D-allulose on acid production and probiotic activities of dairy lactic acid bacteria. J. Dairy Sci. 100: 5936–5944.

    Article  CAS  Google Scholar 

  19. Nagata, Y., N. Mizuta, A. Kanasaki, and K. Tanaka (2018) Rare sugars, d-allulose, d-tagatose and d-sorbose, differently modulate lipid metabolism in rats. J. Sci. Food Agric. 98: 2020–2026.

    Article  CAS  Google Scholar 

  20. Hossain, A., F. Yamaguchi, K. Hirose, T. Matsunaga, L. Sui, Y. Hirata, C. Noguchi, A. Katagi, K. Kamitori, Y. Dong, I. Tsukamoto, and M. Tokuda (2015) Rare sugar D-psicose prevents progression and development of diabetes in T2DM model Otsuka Long- Evans Tokushima Fatty rats. Drug Des. Devel. Ther. 9: 525–535.

    Article  CAS  Google Scholar 

  21. Itoh, K., S. Mizuno, S. Hama, W. Oshima, M. Kawamata, A. Hossain, Y. Ishihara, and M. Tokuda (2015) Beneficial effects of supplementation of the rare sugar “D-allulose” against hepatic steatosis and severe obesity in Lep(ob)/Lep(ob) mice. J. Food Sci. 80: H1619–H1626.

    Article  CAS  Google Scholar 

  22. Nishii, N., S. Takashima, Y. Kobatake, M. Tokuda, and H. Kitagawa (2017) The long-term safety of D-allulose administration in healthy dogs. J. Vet. Med. Sci. 79: 1780–1784.

    Article  CAS  Google Scholar 

  23. Kim, S. E., S. J. Kim, H. J. Kim, and M. K. Sung (2017) d- Psicose, a sugar substitute, suppresses body fat deposition by altering networks of inflammatory response and lipid metabolism in C57BL/6J-ob/ob mice. J. Funct. Foods. 28: 265–274.

    Article  CAS  Google Scholar 

  24. Green, H. and O. Kehinde (1975) An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 5: 19–27.

    Article  CAS  Google Scholar 

  25. Valan Arasu, M., S. Ilavenil, D. H. Kim, S. Gun Roh, J. C. Lee, and K. C. Choi (2014) In vitro and in vivo enhancement of adipogenesis by Italian ryegrass (Lolium multiflorum) in 3T3-L1 cells and mice. PLoS One. 9: e85297.

    Article  Google Scholar 

  26. Ohnishi, R., I. Matsui-Yuasa, Y. Deguchi, K. Yaku, M. Tabuchi, H. Munakata, Y. Akahoshi, and A. Kojima-Yuasa (2012) 1′-acetoxychavicol acetate inhibits adipogenesis in 3T3-L1 adipocytes and in high fat-fed rats. Am. J. Chin. Med. 40: 1189–1204.

    Article  CAS  Google Scholar 

  27. Kang, H. J., H. A. Seo, Y. Go, C. J. Oh, N. H. Jeoung, K. G. Park, and I. K. Lee (2013) Dimethylfumarate suppresses adipogenic differentiation in 3T3-L1 preadipocytes through inhibition of STAT3 activity. PLoS One. 8: e61411.

    Article  CAS  Google Scholar 

  28. Kagebeck, P., V. Nikiforova, L. Brunken, A. Easwaranathan, J. Ruegg, I. Cotgreave, and V. Munic Kos (2018) Lysosomotropic cationic amphiphilic drugs inhibit adipocyte differentiation in 3T3-L1K cells via accumulation in cells and phospholipid membranes, and inhibition of autophagy. Eur. J. Pharmacol. 829: 44–53.

    Article  CAS  Google Scholar 

  29. Manteiga, S. and K. Lee (2017) Monoethylhexyl phthalate elicits an inflammatory response in adipocytes characterized by alterations in lipid and cytokine pathways. Environ. Health Perspect. 125: 615–622.

    Article  CAS  Google Scholar 

  30. Tian, J. and S. T. Andreadis (2009) Independent and high-level dual-gene expression in adult stem-progenitor cells from a single lentiviral vector. Gene Ther. 16: 874–884.

    Article  CAS  Google Scholar 

  31. Rayalam, S., M. A. Della-Fera, and C. A. Baile (2008) Phytochemicals and regulation of the adipocyte life cycle. J. Nutr. Biochem. 19: 717–726.

    Article  CAS  Google Scholar 

  32. Matsuo, T., Y. Baba, M. Hashiguchi, K. Takeshita, K. Izumori, and H. Suzuki (2001) Dietary D-psicose, a C-3 epimer of Dfructose, suppresses the activity of hepatic lipogenic enzymes in rats. Asia Pac. J. Clin. Nutr. 10: 233–237.

    Article  CAS  Google Scholar 

  33. Rosen, E. D. and B. M. Spiegelman (2000) Molecular regulation of adipogenesis. Annu. Rev. Cell Dev. Biol. 16: 145–171.

    Article  CAS  Google Scholar 

  34. Rangwala, S. M. and M. A. Lazar (2000) Transcriptional control of adipogenesis. Annu. Rev. Nutr. 20: 535–559.

    Article  CAS  Google Scholar 

  35. Tontonoz, P., E. Hu, and B. M. Spiegelman (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 79: 1147–1156.

    Article  CAS  Google Scholar 

  36. Farmer, S. R. (2006) Transcriptional control of adipocyte formation. Cell Metab. 4: 263–273.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2017R1A2B1012415).

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungoh Choi.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, S., Kim, Y.H. & Choi, K. Inhibition of 3T3-L1 Adipocyte Differentiation by D-allulose. Biotechnol Bioproc E 25, 22–28 (2020). https://doi.org/10.1007/s12257-019-0352-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0352-7

Keywords

Navigation