Skip to main content
Log in

Simple and Sensitive Paper-based Colorimetric Biosensor for Determining Total Polyphenol Content of the Green Tea Beverages

  • Research Paper
  • Nanobiotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

A simple paper-based colorimetric biosensor based on immobilized tyrosinase and 3-methyl-2-benzothiazolinone hydrazone (MBTH) was developed for assessing total polyphenol content (TPC) of various green tea beverages. The patterned biosensing zone of the paperbased biosensor showed a sensitive response to catechin (a typical green tea polyphenol) by generating pink color adducts that can be captured for further color image analysis using a scanometric method. This color change can be connected to the TPC of the samples. The analytical performance of the biosensor in scanometric set-up was optimized. The biosensor showed a response time of 13 min in the linear range between 0.08-1.03 mM of catechin (r = 0.9979). The detection limit (LOD) of the biosensor was 0.071 mM while reproducibility was found at 3.11% RSD (relative standard deviation). TPC of green tea beverages was assessed by the biosensor, and the results were in accordance with the UV/Vis spectrophotometric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karori, S. M., F. N. Wachira, J. K. Wanyoko, and R. M. Ngure (2007) Antioxidant capacity of different types of tea products. Afr. J. Biotechnol. 6: 2287–2296.

    Article  CAS  Google Scholar 

  2. Sano, J., T. Ogawa, S. Inami, F. Ishibashi, K. Okamatsu, H. Kamon, K. Seimiya, G. Takagi, S. Sakai, A. Nomura, and K. Mizuno (2003) Effect of green tea intake on the development of coronary artery disease. J. Am. Coll. Cardiol. 41: 531.

    Article  Google Scholar 

  3. Uesato, S., Y. Kitagawa, M. Kamishimoto, A. Kumagai, H. Hori, and H. Nagasawa (2001) Inhibition of green tea catechins against the growth of cancerous human colon and hepatic epithelial cells. Cancer Lett. 170: 41–44.

    Article  CAS  Google Scholar 

  4. Vinson, J. A., K. Teufel, and N. Wu (2004) Green and black teas inhibit atherosclerosis by lipid, antioxidant, and fibrinolytic mechanisms. J. Agric. Food Chem. 52: 3661–3665.

    Article  CAS  Google Scholar 

  5. Lin, L. Z., P. Chen, and J. M. Harnly (2008) New phenolic components and chromatographic profiles of green and fermented teas. J. Agric. Food Chem. 56: 8130–8140.

    Article  CAS  Google Scholar 

  6. Nadifiyine, S., C. Calas-Blanchard, A. Amine, and J. L. Marty (2013) Tyrosinase biosensor used for the determination of catechin derivatives in tea: correlation with HPLC/DAD method. Food Nutr. Sci. 4: 108–118.

    CAS  Google Scholar 

  7. Lee, L. S., S. H. Kim, Y. B. Kim, and Y. C. Kim (2014) Quantitative analysis of major constituents in green tea with different plucking periods and their antioxidant activity. Molecules. 19: 9173–9186.

    Article  Google Scholar 

  8. Bae, I. K., H. M. Ham, M. H. Jeong, D. H. Kim, and H. J. Kim (2015) Simultaneous determination of 15 phenolic compounds and caffeine in teas and mate using RP-HPLC/UV detection: Method development and optimization of extraction process. Food Chem. 172: 469–475.

    Article  CAS  Google Scholar 

  9. He, X., J. Li, W. Zhao, R. Liu, L. Zhang, and X. Kong (2015) Chemical fingerprint analysis for quality control and identification of Ziyang green tea by HPLC. Food Chem. 171: 405–411.

    Article  CAS  Google Scholar 

  10. Yi, T., L. Zhu, W. L. Peng, X. C. He, H. L. Chen, J. Li, T. Yu, Z. T. Liang, Z. Z. Zhao, and H. B. Chen (2015) Comparison of ten major constituents in seven types of processed tea using HPLCDAD-MS followed by principal component and hierarchical cluster analysis. Lebenson Wiss Technol. 62: 194–201.

    Article  CAS  Google Scholar 

  11. Abdullah, J., M. Ahmad, L. Y. Heng, N. Karuppiah, and H. Sidek (2007) An optical biosensor based on immobilization of laccase and MBTH in stacked films for the detection of catechol. Sensors. 7: 2238–2250.

    Article  CAS  Google Scholar 

  12. Dolinsky, M., C. Agostinho, D. Ribeiro, G. De Souza Rocha, S. Girão Barroso, D. Ferreira, R. Polinati, G. Ciarelli, and E. Fialho (2016) Effect of different cooking methods on the polyphenol concentration and antioxidant capacity of selected vegetables. J. Culin. Sci. Technol. 14: 1–12.

    Article  Google Scholar 

  13. Diniz, P. H., M. F. Barbosa, K. D. de Melo Milanez, M. F. Pistonesi, and M. C. de Araújo (2016) Using UV–Vis spectroscopy for simultaneous geographical and varietal classification of tea infusions simulating a home-made tea cup. Food Chem. 192: 374–379.

    Article  CAS  Google Scholar 

  14. Wang, X., J. Huang, W. Fan, and H. Lu (2015) Identification of green tea varieties and fast quantification of total polyphenols by near-infrared spectroscopy and ultraviolet-visible spectroscopy with chemometric algorithms. Anal. Methods. 7: 787–792.

    Article  CAS  Google Scholar 

  15. Cleverdon, R., Y. Elhalaby, M. McAlpine, W. Gittings, and W. Ward (2018) Total polyphenol content and antioxidant capacity of tea bags: comparison of black, green, red rooibos, chamomile and peppermint over different steep times. Beverages. 4: 15.

    Article  Google Scholar 

  16. Tadesse, A., A. Hymete, A. A. Bekhit, and S. F. Mohammed (2015) Quantification of total polyphenols, catechin, caffeine, L-theanine, determination of antioxidant activity and effect on antileishmanial drugs of ethiopian tea leaves extracts. Pharmacognosy Res. 7: S7–S14.

    PubMed  PubMed Central  Google Scholar 

  17. Bhebhe, M., T. N. Füller, B. Chipurura, and M. Muchuweti (2016) Effect of solvent type on total phenolic content and free radical scavenging activity of black tea and herbal infusions. Food Anal. Methods. 9: 1060–1067.

    Article  Google Scholar 

  18. Castiglioni, S., E. Damiani, P. Astolfi, and P. Carloni (2015) Influence of steeping conditions (time, temperature, and particle size) on antioxidant properties and sensory attributes of some white and green teas. Int. J. Food Sci. Nutr. 66: 491–497.

    Article  CAS  Google Scholar 

  19. Box, J. D. (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res. 17: 511–525.

    Article  CAS  Google Scholar 

  20. Hidayat, M. A., F. Jannah, and B. Kuswandi (2016) Development of paper based sensor for the determination of total phenolic content in green tea beverages. Agric. Agric. Sci. Procedia. 9: 424–430.

    Google Scholar 

  21. Arciuli, M., G. Palazzo, A. Gallone, and A. Mallardi (2013) Bioactive paper platform for colorimetric phenols detection. Sens Actuators B Chem. 186: 557–562.

    Article  CAS  Google Scholar 

  22. Fernandes, S. C., S. K. Moccelini, C. W. Scheeren, P. Migowski, J. Dupont, M. Heller, G. A. Micke, and I. C. Vieira (2009) Biosensor for chlorogenic acid based on an ionic liquid containing iridium nanoparticles and polyphenol oxidase. Talanta. 79: 222–228.

    Article  CAS  Google Scholar 

  23. Muñoz, J. L., F. García-Molina, R. varón, J. N. Rodriguez-Lopez, F. García-Cánovas, and J. Tudelaa (2006) Calculating molar absorptivities for quinones: Application to the measurement of tyrosinase activity. Anal. Biochem. 351: 128–138.

    Article  Google Scholar 

  24. Mutti, F. G., R. Pievo, M. Sgobba, M. Gullotti, and L. Santagostini (2008) Biomimetic modeling of copper complexes: a study of enantioselective catalytic oxidation on D-(+)-catechin and L-(−)-epicatechin with copper complexes. Bioinorg. Chem. Appl. 2008: 762029.

    Article  Google Scholar 

  25. Abdullah, J., M. Ahmad, L. Y. Heng, N. Karuppiah, and H. Sidek (2006) Chitosan-based tyrosinase optical phenol biosensor employing hybrid nafion/sol–gel silicate for MBTH immobilization. Talanta. 70: 527–532.

    Article  CAS  Google Scholar 

  26. Senyurt, Ö., F. Eyidoğan, R. Yilmaz, M. T. Öz, V. C. Özalp, Y. Arica, and H. A. Öktem (2015) Development of a paper-type tyrosinase biosensor for detection of phenolic compounds. Biotechnol. Appl. Biochem. 62: 132–136.

    Article  CAS  Google Scholar 

  27. Magalhaes, L. M., M. A. Segundo, S. Reis, J. L. F. C. Lima, and A. O. S. S. Rangel (2006) Automatic method for the determination of Folin-ciocalteu reducing capacity in food products. J. Agric. Food Chem. 54: 5241–5246.

    Article  CAS  Google Scholar 

  28. Amatatongchai, M., W. Sroysee, S. Laosing, and S. Chairam (2013) Rapid screening method for assessing total phenolic content using simple flow injection system with laccase basedbiosensor. Int. J. Electrochem. Sci. 8: 10526–10539.

    CAS  Google Scholar 

  29. Jiménez-Atiénzar, M., J. Cabanes, F. Gandía-Herrero, and F. García-Carmona (2004) Kinetic analysis of catechin oxidation by polyphenol oxidase at neutral pH. Biochem. Biophys. Res. Commun. 319: 902–910.

    Article  Google Scholar 

  30. Munoz-Munoz, J. L., F. García-Molina, M. Molina-Alarcón, J. Tudela, F. García-Cánovas, and J. N. Rodríguez-López (2008) Kinetic characterization of the enzymatic and chemical oxidation of the catechins in green tea. J. Agric. Food Chem. 56: 9215–9224.

    Article  CAS  Google Scholar 

  31. Munoz, J., F. García-Molina, R. Varon, J. N. Rodríguez-López, P. A. García-Ruiz, F. García-Cánovas, and J. Tudela (2007) Kinetic characterization of the oxidation of chlorogenic acid by polyphenol oxidase and peroxidase. Characteristics of the o-quinone. J. Agric. Food Chem. 55: 920–928.

    Article  CAS  Google Scholar 

  32. Büyükbalci, A. and S. N. El (2008) Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum. Nutr. 63: 27–33.

    Article  Google Scholar 

  33. Katalinic, V., M. Milos, T. Kulisic, and M. Jukic (2006) Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chem. 94: 550–557.

    Article  CAS  Google Scholar 

  34. Stevanato, R., S. Fabris, and F. Momo (2004) New enzymatic method for the determination of total phenolic content in tea and wine. J. Agric. Food Chem. 52: 6287–6293.

    Article  CAS  Google Scholar 

  35. Huber, L. (2007) Validation and Qualification in Analytical Laboratories. 2nd ed., pp. 145–147. CRC Press, Boca Raton, FL, USA.

    Book  Google Scholar 

  36. Queiroz, C., M. L. Mendes Lopes, E. Fialho, and V. L. Valente-Mesquita (2008) Polyphenol oxidase: characteristics and mechanisms of browning control. Food Rev. Int. 24: 361–375.

    Article  CAS  Google Scholar 

  37. Yuwono, M. and G. Indrayanto (2005) Validation of chromatographic methods of analysis. Profiles Drug Subst Excip Relat Methodol. 32: 243–259.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Chemo & Biosensor Group at Faculty of Pharmacy, The University of Jember for supporting this work. The authors declare that they have no conflict of interest. Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mochammad Amrun Hidayat.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Compliance with Ethical Standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidayat, M.A., Maharani, D.A., Purwanto, D.A. et al. Simple and Sensitive Paper-based Colorimetric Biosensor for Determining Total Polyphenol Content of the Green Tea Beverages. Biotechnol Bioproc E 25, 255–263 (2020). https://doi.org/10.1007/s12257-019-0299-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0299-8

Keywords

Navigation