Skip to main content
Log in

A Series of Novel Esters of Capsaicin Analogues Catalyzed by Candida antarctica Lipases

  • Research Paper
  • Enzyme Technology and Protein Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Capsaicin analogues are typically synthetized by condensation of the amide group of vanillylamine with a fatty acid derivative. The enzyme of choice to perform this reaction is Candida antarctica lipase B; however, this enzyme is unable to react with the phenolic substiruents of the vanillyl ring. So far, this can only be achieved chemically, resulting in capsaicin esters with higher lipophilicity and less irritation than the parent compound. In need of searching for new capsaicin derivatives, we investigated the transesterification of the phenolic OH group of capsaicin and several capsaicin analogues by Candida antarctica lipase A (CALA) with vinyl esters. Capsaicin esters were successfully synthetized with a reaction yield of 80.6% and 57.5% with vinyl butyrate and vinyl laurate, respectively. When the reactions were performed with capsaicin analogues of different acyl chain lengths, CALA exhibited a noticeable transesterification preference for medium-length capsaicin analogues. In an attempt to explore the catalytic limits of CALA, we performed the transesterification of capsaicin from Capsicum oleoresin. The results showed similar transesterification yields to those obtained with semi-pure capsaicin. Within our knowledge, this is the first report to achieve the synthesis of phenolic OH esters of capsaicin and capsaicin analogues by enzymatic means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Caterina, M. J., M. A. Schumacher, M. Tominaga, T. A. Rosen, J. D. Levine, and D. Julius (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature. 389: 816–824.

    CAS  PubMed  Google Scholar 

  2. Balabathula, P., H. Bhattacharjee, L. A. Thoma, R. J. Nolly, F. P. Horton, G. D. Stornes, J. Y. Wan, I. M. Brooks, G. A. Bachmann, D. C. Foster, and C. S. Brown (2014) Potency and stability of intradermal capsaicin: implications for use as a human model of pain in multicenter clinical trials. Clin. Exp. Pharmacol. 4: 142.

    PubMed  Google Scholar 

  3. Nilius, B. and R. Vennekens (2010) TRP channels and human disease, pp. 1–67. In: A. Gomtsyan and C. R. Faltynek (eds.). Vanilloid receptor TRPV1 in drug discovery: targeting pain and other pathological disorders. John Wiley & Sons, Inc., Hoboken, NJ, USA.

    Google Scholar 

  4. Dickenson, A. H. and A. Dray (1991) Selective antagonism of capsaicin by capsazepine: evidence for a spinal receptor site in capsaicin-induced antinociception. Br. J. Pharmacol. 104: 1045–1049.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Urban, L. and A. Dray (1991) Capsazepine, a novel capsaicin antagonist, selectively antagonises the effects of capsaicin in the mouse spinal cord in vitro. Neurosci. Lett. 134: 9–11.

    CAS  PubMed  Google Scholar 

  6. Walpole, C. S. J., S. Bevan, G. Bovermannm, J. J. Boelsterli, R. Breckenridge, J. W. Davies, G. A. Hughes, I. James, L. Oberer, J. Winter, and R. Wrigglesworth (1994) The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J. Med. Chem. 37: 1942–1954.

    CAS  PubMed  Google Scholar 

  7. Bevan, S., S. Hothi, G. Hughes, I. F. James, H. P. Rang, K. Shah, C. S. Walpole, and J. C. Yeats (1992) Capsazepine: a competitive antagonist of the sensory neurone excitant capsaicin. Br. J. Pharmacol. 107: 544–552.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Appendino, G., S. Harrison, L. De Petrocellis, N. Daddario, F. Bianchi, A. Schiano Monello, M. Trevisani, F. Benvenuti, P. Geppetti, and V. Di Marzo (2003) Halogenation of a capsaicin analogue leads to novel vanilloid TRPVI receptor antagonists. Br. J. Pharmacol. 139: 1417–1424.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Appendino, G., N. Daddario, A. Minassi, A. S. Monello, L. De Petrocellis, and V. Di Marzo (2005) The taming of capsaicin. Reversal of the vanilloid activity of N-acylvanillamines by aromatic iodination. J. Med. Chem. 48: 4663–4669.

    CAS  PubMed  Google Scholar 

  10. Walpole, C. S. J., S. Bevan, G. Bloomfield, R. Breckenridge, I. F. James, T. Ritchie, A. Szallasi, J. Winter, and R. Wrigglesworth (1996) Similarities and differences in the structure-activity relationships of capsaicin and resiniferatoxin analogues. J. Med. Chem. 39: 2939–2952.

    CAS  PubMed  Google Scholar 

  11. Walpole, C. S. J., R. Wrigglesworth, S. Bevan, E. A. Campbell, A. Dray, I. F. James, M. N. Perkins, D. J. Reid, and J. Winter (1993) Analogs of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 1. The aromatic “A-region.” J. Med. Chem. 36: 2362–2372.

    CAS  PubMed  Google Scholar 

  12. Singh, C. U. and R. N. Jagaveerabhadra (2011) Esters of capsaicin for treating pain. US Patent 7, 943, 666B2.

    Google Scholar 

  13. Reyes-Duarte, D., E. Castillo, R. Martinez, and A. López-Munguía (2002) Lipase-catalysed synthesis of olvanil in organic solvents. Biotechnol. Lett. 24: 2057–2061.

    CAS  Google Scholar 

  14. Castillo, E., A. Torres-Gavilán, P. Severiano, N. Arturo, and A. López-Munguia (2007) Lipase-catalyzed synthesis of pungent capsaicin analogues. Food Chem. 100: 1202–1208.

    CAS  Google Scholar 

  15. Castillo, E., I. López-Gonzalez, R. De Regil-Hernández, D. Reyes-Duarte, D. Sánchez-Herrera, A. López-Munguía, and A. Darszon (2007) Enzymatic synthesis of capsaicin analogs and their effect on the T-type Ca2+ channels. Biochem. Biophys. Res. Commun. 356: 424–430.

    CAS  PubMed  Google Scholar 

  16. Wang, B., F. Yang, Y. F. Shan, W. W. Qiu, and J. Tang (2009) Highly efficient synthesis of capsaicin analogues by condensation of vanillylamine and acyl chlorides in a biphase H2O/CHCl3 system. Tetrahedron. 65: 5409–5412.

    CAS  Google Scholar 

  17. Kobata, K., M. Kobayashi, Y. Tamura, S. Miyoshi, S. Ogawa, and T. Watanabe (1999) Lipase-catalyzed synthesis of capsaicin analogs by transacylation of capsaicin with natural oils or fatty acid derivatives in n-hexane. Biotechnol. Lett. 21: 547–550.

    CAS  Google Scholar 

  18. Kobata, K., M. Kawamura, M. Toyoshima, Y. Tamura, S. Ogawa, and T. Watanabe (1998) Lipase-catalyzed synthesis of capsaicin analogs by amidation of vanillylamine with fatty acid derivatives. Biotechnol. Lett. 20: 451–454.

    CAS  Google Scholar 

  19. Cha, H. J., J. B. Park, and S. Park (2019) Esterification of secondary alcohols and multi-hydroxyl compounds by Candida antarctica lipase B and subtilisin. Biotechnol. Bioprocess Eng. 24: 41–47.

    CAS  Google Scholar 

  20. Chen, H., X. Meng, X. Xu, W. Liu, and S. Li (2018) The molecular basis for lipase stereoselectivity. Appl. Microbiol. Biotechnol. 102: 3487–3495.

    CAS  PubMed  Google Scholar 

  21. Guyot, B., B. Bosquette, M. Pina, and J. Graille (1997) Esterification of phenolic acids from green coffee with an immobilized lipase from Candida antarctica in solvent-free medium. Biotechnol. Lett. 19: 529–532.

    CAS  Google Scholar 

  22. Figueroa-Espinoza, M. C., M. Laguerre, P. Villeneuve, and J. Lecomte (2013) From phenolics to phenolipids: optimizing antioxidants in lipid dispersions. Lipid Technol. 25: 131–134.

    Google Scholar 

  23. Sheldon, R. A. and S. van Pelt (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev. 42: 6223–6235.

    CAS  PubMed  Google Scholar 

  24. Wohlgemuth, R. (2010) Biocatalysis — key to sustainable industrial chemistry. Curr Opin. Biotechnol. 21: 713–724.

    CAS  PubMed  Google Scholar 

  25. Dominguez De Maria, P., C. Carboni-Oerlemans, B. Tuin, G. Bargeman, A. Van Der Meer, and R. Van Gemert (2005) Biotechnological applications of Candida antarctica lipase A: State-of-the-art. J. Mol. Catal. B Enzym. 37: 36–46.

    Google Scholar 

  26. Pihko, A. J., K. Lundell, L. Kanerva, and A. M. P. Koskinen (2004) Enantioselective synthesis of a hindered furyl substituted allyl alcohol intermediate: a case study in asymmetric synthesis. Tetrahedron. Asymmetry. 15: 1637–1643.

    CAS  Google Scholar 

  27. Skjot, M., L. De Maria, R. Chatterjee, A. Svendsen, S. A. Patkar, P. R. Ostergaard, and J. Brask (2009) Understanding the plasticity of the alpha/beta hydrolase fold: lid swapping on the Candida antarctica lipase B results in chimeras with interesting biocatalytic properties. Chembiochem. 10: 520–527.

    CAS  PubMed  Google Scholar 

  28. From, M., P. Adlercreutz, and B. Mattiasson (1997) Lipase catalyzed esterification of lactic acid. Biotechnol. Lett. 19: 315–318.

    CAS  Google Scholar 

  29. Kim, H., Y. K. Choi, J. Lee, E. Lee, J. Park, and M. J. Kim (2011) Ionic-surfactant-coated Burkholderia cepacia lipase as a highly active and enantioselective catalyst for the dynamic kinetic resolution of secondary alcohols. Angew. Chem. Int. Ed. Engl. 50: 10944–10948.

    CAS  PubMed  Google Scholar 

  30. Ema, T., M. Jittani, T. Sakai, and M. Utaka (1998) Lipase-catalyzed kinetic resolution of large secondary alcohols having tetraphenylporphyrin. Tetrahedron. Lett. 39: 6311–6314.

    CAS  Google Scholar 

  31. Ericsson, D. J., A. Kasrayan, P. Johansson, T. Bergfors, A. G. Sandström, J. E. Bäckvall, and S. L. Mowbray (2008) X-ray structure of Candida antarctica lipase A shows a novel lid structure and a likely mode of interfacial activation. J. Mol. Biol. 376: 109–119.

    CAS  PubMed  Google Scholar 

  32. Seo, J. H., S. M. Lee, J. Lee, and J. B. Park (2015) Adding value to plant oils and fatty acids: biological transformation of fatty acids into co-hydroxycarboxylic, α,ω-dicarboxylic, and ω-aminocarboxylic acids. J. Biotechnol. 216: 158–166.

    CAS  PubMed  Google Scholar 

  33. Lee, D., J. W. Song, M. Voß, E. Schuiten, R. K. Akula, Y. U. Kwon, U. Bornscheuer, and J. B. Park (2019) Enzyme cascade reactions for the biosynthesis of long chain aliphatic amines from renewable fatty acids. Adv. Synth. Catal. 361: 1359–1367.

    CAS  Google Scholar 

  34. Woo, J. M., E. Y. Jeon, E. J. Seo, J. H. Seo, D. Y. Lee, Y. J. Yeon, and J. B. Park (2018) Improving catalytic activity of the Baeyer-Vdliger monooxygenase-based Escherichia coli biocatalysts for the overproduction of (Z)-11-(heptanoyloxy)undec-9-enoic acid from ricinoleic acid. Sci. Rep. 8: 10280.

    PubMed  PubMed Central  Google Scholar 

  35. Seo, E. J., Y. J. Yeon, J. H. Seo, J. H. Lee, J. P. Bongol, Y. Oh, J. M. Park, S. M. Lim, C. G. Lee, and J. B. Park (2018) Enzyme/ whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid. Bioresour. Technol. 251: 288–294.

    CAS  PubMed  Google Scholar 

  36. Cha, H. J., E. J. Seo, J. W. Song, H. J. Jo, A. R. Kumar, and J. B. Park (2018) Simultaneous enzyme/whole-cell biotransformation of C (18). ricinoleic acid into (R)-3-hydroxynonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid 360: 696–703.

    CAS  Google Scholar 

  37. Jeon, E. Y., J. H. Seo, W. R. Kang, M. J. Kim, J. H. Lee, D. K. Oh, and J. B. Park (2016) Simultaneous enzyme/whole-cell biotransformation of plant oils into C(9). carboxylic acids 6: 7547–7553.

    CAS  Google Scholar 

  38. Ganesa, S., A. Karthik, S. B. Karnath, K. Prabahar, A. Ranjithkumar, S. Pathak, and N. Udupa (2008) Stability-indicating HPTLC determination of capsaicin in the bulk drug. J. Planar. Chromatogr. Mod. TLC 21: 271–275.

    Google Scholar 

  39. Singh, C. U. and R. N. Jagaveerabhadra (2009) Esters of capsaicinoids as dietary supplements. US Patent 20100120912A1.

    Google Scholar 

  40. Singh, C. U., D. L. Woody, and R. N. Jagaveerabhadra (2013) Pharmaceutical compositions comprising capsaicin esters for treating pain and cold sores. US Patent 20140134261.

    Google Scholar 

  41. Annesto, N., M. Ferrerò, S. Fernández, and V. Gotor (2002) Regioselective enzymatic acylation of methyl shikimate. Influence of acyl chain length and solvent polarity on enzyme specificity. J. Org. Chem. 67: 4978–4981.

    Google Scholar 

  42. Ishihara, K., S. I. Kwon, N. Masuoka, N. Nakajima, and H. Hamada (2010) One-procedure synthesis of capsiate from capsaicin by lipase-catalyzed dynamic transacylation. World J. Microbiol. Biotechnol. 26: 1337–1340.

    CAS  PubMed  Google Scholar 

  43. Wrigglesworth, R., C. S. J. Walpole, S. Bevan, E. A. Campbell, A. Dray, G. A. Hughes, I. James, K. J. Masdin, and J. Winter (1996) Analogues of capsaicin with agonist activity as novel analgesic agents; structure-activity studies. 4. Potent, orally active analgesics. J. Med. Chem. 39: 4942–4951.

    CAS  PubMed  Google Scholar 

  44. Mercadante, A. Z., D. B. Rodrigues, F. C. Perry, and L. R. B. Mariutti (2017) Carotenoid esters in foods - A review and practical directions on analysis and occurrence. Food Res. Int. 99: 830–850.

    CAS  PubMed  Google Scholar 

  45. Minguez-Mosquera, M. I. and D. Hornero-Mendez (1994) Changes in carotenoid esterification during the fruit ripening of Capsicum annuum Cv. Bola. J. Agric. Food Chem. 42: 640–644.

    CAS  Google Scholar 

  46. Pérez-Gálvez, A. and M. I. Minguez-Mosquera (2005) Esterification of xanthophylls and its effect on chemical behavior and bioavailability of carotenoids in the human. Nutr. Res. 25: 631–640.

    Google Scholar 

  47. Subagio, A. and N. Morita (2003) Prooxidant activity of lutein and its dimyristate esters in corn triacylglyceride. Food Chem. 81: 97–102.

    CAS  Google Scholar 

  48. Fernández-García, E., M. I. Mínguez-Mosquera, and A. Pérez-Gálvez (2007) Changes in composition of the lipid matrix produce a differential incorporation of carotenoids in micelles. Interaction effect of cholesterol and oil. Innov Food Sci. Emerg. Technol. 8: 379–384.

    Google Scholar 

  49. Melgar-Lalanne, G., A. J. Hernández-Álvarez, M. Jiménez-Fernández, and E. Azuara (2017) Oleoresins from Capsicum spp.: extraction methods and bioactivity. Food Bioprocess Technol. 10: 51–76.

    CAS  Google Scholar 

  50. Arimboor, R., R. B. Natarajan, K. R. Menon, L. P. Chandrasekhar, and V. Moorkoth (2015) Red pepper (Capsicum annuum) carotenoids as a source of natural food colors: analysis and stability—a review. J. Food Sci. Technol. 52: 1258–1271.

    CAS  PubMed  Google Scholar 

  51. Perva-Uzunalic, A., M. Skerget, B. Weinreich, and Z. Knez (2004) Extraction of chilli pepper (var. Byedige) with supercritical CO2: Effect of pressure and temperature on capsaicinoid and colour extraction efficiency. Food Chem. 87: 51–58.

    CAS  Google Scholar 

  52. Molina-Torres, J., A. García-Chávez, and E. Ramírez-Chávez (1999) Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: affinin and capsaicin. J. Ethnopharmacol. 64: 241–248.

    CAS  PubMed  Google Scholar 

  53. Sricharoen, P., N. Lamaiphan, P. Patthawaro, N. Limchoowong, S. Techawongstien, and S. Chanthai (2017) Phytochemicals in Capsicum oleoresin from different varieties of hot chilli peppers with their antidiabetic and antioxidant activities due to some phenolic compounds. Ultrason. Sonochem. 38: 629–639.

    CAS  PubMed  Google Scholar 

  54. Bae, H., G. K. Jayaprakasha, K. Crosby, J. L. Jifon, and B. S. Patii (2012) Influence of extraction solvents on antioxidant activity and the content of bioactive compounds in non-pungent peppers. Plant Foods Hum. Nutr. 67: 120–128.

    CAS  PubMed  Google Scholar 

  55. Özyildiz, F., S. Karagönlü, G. Basal, A. Uzel, and O. Bayraktar (2013) Micro-encapsulation of ozonated red pepper seed oil with antimicrobial activity and application to nonwoven fabric. Lett. Appl. Microbiol. 56: 168–179.

    PubMed  Google Scholar 

  56. Madhumathy, A. P., A. A. Aivazi, and V. A. Vijayan (2007) Larvicidal efficacy of Capsicum annum against Anopheles stephensi and Culex quinquefasciatus. J. Vector Borne Dis. 44: 223–226.

    CAS  PubMed  Google Scholar 

  57. Maliszewska, J. and E. Tęgowska (2012) Capsaicin as an organophosphate synergist against Colorado potato beetle (Leptinotarsa decemlineata Say). J. Plant Prot. Res. 52: 28–34.

    Google Scholar 

  58. Koleva-Gudeva, L., S. Mitrev, V. Maksimova, and D. Spasov (2013) Content of capsaicin extracted from hot pepper (Capsicum annuum ssp. microcarpum L.) and its use as an ecopesticide. Hem. Ind. 67: 671–675.

    Google Scholar 

  59. Fitzgerald, C. S., P. D. Curtis, M. E. Richmond, and J. A. Dunn (1995) Effectiveness of Capsaicin as a repellent to birdseed consumption by gray squirrels. National Wildlife Research Center Repellents Conference. August 8–10. Denver, Colorado, USA.

    Google Scholar 

  60. Andelt, W. F., K. P. Burnham, and D. L. Baker (1994) Effectiveness of capsaicin and bitrex repellents for deterring browsing by captive mule deer. J. Wildl. Manage. 58: 330–334.

    Google Scholar 

  61. Shumake, S. A., R. T. Sterner, and S. E. Gaddis (2000) Repellents to reduce cable gnawing by wild Norway rats. J. Wildl. Manage. 64: 1009–1013.

    Google Scholar 

  62. Kobata, K., K. Saito, H. Tate, A. Nashimoto, H. Okuda, I. Takemura, K. Miyakawa, M. Takahashi, K. Iwai, and T. Watanabe (2010) Long-chain N-vanillyl-acylamides from Capsicum oleoresin. J. Agric. Food Chem. 58: 3627–3631.

    CAS  PubMed  Google Scholar 

  63. Chinn, M. S., R. R. Sharma-Shivappa, and J. L. Cotter (2011) Solvent extraction and quantification of capsaicinoids from Capsicum chinense. Food Bioprod. Process. 89: 340–345.

    CAS  Google Scholar 

  64. Rocha-Uribe, J. A., J. I. Novelo-Pérez, and C. A. Ruiz-Mercado (2014) Cost estimation for CO2 supercritical extraction systems and manufacturing cost for habanero chili. J. Supercrit. Fluids. 93: 38–41.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by SEP-CONACYT grant 242544-2014. T.D-V. thanks CONACYT for her doctoral fellowship. The authors would like to express their gratitude to Dr. Torres and Mr. Rosales for their generous gifts of vanillylamine hydrochloride and Capsicum oleoresin.

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Rodríguez.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz-Vidal, T., Rosales-Rivera, L.C., Mateos-Díaz, J.C. et al. A Series of Novel Esters of Capsaicin Analogues Catalyzed by Candida antarctica Lipases. Biotechnol Bioproc E 25, 94–103 (2020). https://doi.org/10.1007/s12257-019-0290-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0290-4

Keywords

Navigation