Skip to main content
Log in

Heterologous Production and Glycosylation of Japanese Eel Follitropin Using Silkworm

  • Research Paper
  • Animal Cell Biotechnology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Follitropin, an important gonadotropin hormone, participates in vitellogenesis and spermatogenesis. Equine chorionic gonadotropin (eCG) can induce gonadotropin hormone activity in non-equid species and exhibits a long biological half-life. Here, we report the production, using silkworm larval and pupal systems, of biologically active recombinant hybrid-type follitropins based on the coding sequence of the eCG C-terminal peptide (CTP) between the mature β- and α-chains of eel. The three constructs, rJeFSH, rJeFSH·eCG, and rJeFSH·2xeCG were produced and verified to be N- or O-glycosylated and secreted mature peptides. Although rJeFSH·eCG contains more elaborate O-linked carbohydrate chains than rJeFSH, it elicited no significant in vitro oocyte maturation, which may be a result of insufficient terminal sialylation of its N-and O-linked carbohydrate chains. Then, a hybrid of rJeFSH·2xeCG extended with two eCG CTP. Furthermore, the receptor binding assay revealed potency of rJeFSH and rJeFSH·2xeCG to be a few folds greater than that of rJeFSH·eCG. The findings of this study will be useful for the development of more efficient GTHs in teleosts, including eels, when various modifications with two or more extended eCG CTP produced by silkworm are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierce, J. G. and T. F. Parsons (1981) Glycoprotein hormones: structure and function. Annu. Rev. Biochem. 50: 465–495.

    Article  CAS  Google Scholar 

  2. Hearn, M. T. and P. T. Gomme (2000) Molecular architecture and biorecognition processes of the cysteine knot protein superfamily: part 1. The glycoprotein hormone. J. Mol. Recognit. 13: 223–278.

    Article  CAS  Google Scholar 

  3. Murphy, B. D. and S. D. Martinuk (1991) Equine chorionic gonadotropin. Endocr. Rev. 12: 27–44.

    Article  CAS  Google Scholar 

  4. Bousfield, G. R., V. Y. Butnev., R. R. Gotschall, V. L. Baker, and W. T. Moore (1996) Structural features of mammalian gonadotropins. Mol. Cell Endocrinol. 125: 3–19.

    Article  CAS  Google Scholar 

  5. Bousfield, G. R., V. Y. Butnev, and V. Y. Butnev (2001) Identification of twelve O-glycosylation sites in equine chorionic gonadotropin beta and equine luteinizing hormone ss by solidphase Edman degradation. Biol. Reprod. 64: 136–147.

    Article  CAS  Google Scholar 

  6. Hang, H. C. and C. R. Bertozzi (2005) The chemistry and biology of mucin type O-linked glycosylation. Bioorg. Med. Chem. 13: 5021–5034.

    Article  CAS  Google Scholar 

  7. Sugino, H., G. R. Bousfield, W. T. Moore Jr., and D. N. Ward (1987) Structural studies on equine glycoprotein hormones. Amino acid sequence of equine chorionic gonadotropin beta-subunit. J. Biol. Chem. 262: 8603–8609.

    CAS  PubMed  Google Scholar 

  8. Matsui, T., H. Sugino, M. Miura, G. R. Bousfield, D. N. Ward, K. Titani, and T. Mizuochi (1991) Beta-subunits of equine chorionic gonadotropin and lutenizing hormone with an identical amino acid sequence have different asparagine-linked oligosaccharide chains. Biochem. Biophys. Res. Commun. 174: 940–945.

    Article  CAS  Google Scholar 

  9. Simth, P. L., G. R. Bousfiedl, S. Kumar, D. Fiete, and J. U. Baenziger (1993) Equine lutropin and chorionic gonadotropin bear oligosaccharides terminating with SO4-4-GalNAc and Sia alpha 2,3-Gal, respectively. J. Biol. Chem. 268: 795–802.

    Google Scholar 

  10. Partino, R. (1997) Manipulations of the reproductive system of fishes by means of exogenous chemicals. Prog. Fish Cult. 59: 118–128.

    Article  Google Scholar 

  11. Zohar, Y. and C. C. Mylonas (2001) Endocrine manipulations of spawning in cultured fish: from hormones to genes. Aquaculture. 197: 99–136.

    Article  CAS  Google Scholar 

  12. Molés, G., S. Zanuy, I. Muñoz, B. Crespo, I. Martínez, E. Mañanós, and A. Gómez (2011) Receptor specificity and functional comparison of recombinant sea bass (Dicentrarchus labrax) gonadotropins (FSH and LH) produced in different host systems. Biol. Reprod. 84: 1171–1181.

    Article  Google Scholar 

  13. Choi, J. H., D. J. Kim, S. M. Hong, S. J. Jo, K. S. Min, Y. C. Sohn, J. M. Lee, and T. Kusakabe (2016) Molecular analysis and Bioactivity of luteinizing hormone from Japanese eel, Anguilla japonica, produced in silkworm pupae. Biotechnol. Bioprocess Eng. 21: 381–388.

    Article  CAS  Google Scholar 

  14. Motohashi, T., T. Shimojima, T. Fukagawa, K. Maenaka, and E. Y. Park (2005) Efficient large scale protein production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem. Biophys. Res. Commun. 326: 564–569.

    Article  CAS  Google Scholar 

  15. Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk (1985) Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.

    Article  CAS  Google Scholar 

  16. Hong, S. M., H. S. Sung, M. H. Kang, C. G. Kim, Y. H. Lee, D. J. Kim, J. M. Lee, and T. Kusakabe (2014) Characterization of Cryptopygus antarcticus endo-β-1, 4-glucanase from Bombyx mori expression systems. Mol. Biotech. 56: 878–889.

    Article  CAS  Google Scholar 

  17. Righetti, P. G. and J. W. Drysdale (1974) Isoelectric focusing in gels. J. Chromatogr. A. 98: 271–321.

    Article  CAS  Google Scholar 

  18. Kim, D. J., C. W. Park, M. Byambaragchaa, S. K. Kim, B. I. Lee, H. K. Hwang, J. I. Myeong, S. M. Hong, M. H. Kang, and K. S. Min (2016) Data on the characterization of follicle stimulating hormone monoclonal antibodies and localization in Japanese eel pituitary. Data Brief. 8: 404–410.

    Article  Google Scholar 

  19. Lee, S. Y., M. Byambaragchaa, J. S. Kim, H. K. Seong, M. H. Kang, and K. S. Min (2017) Biochemical characterization of recombination equine chorionic gonadotropin (rec-e CG), using CHO cells and pathHunter parental cells expressing equine luteinizing hormone/chorionic gonadotropin receptors (eLH/CGR). J. Life Sci. 27: 864–872.

    Google Scholar 

  20. Kobayashi, M., T. Morita, K. Ikeguchi, G. Yoshizaki, T. Suzuki, and S. Watabe (2006) In vivo biological activity of recombinant goldfish gonadotropins produced by baculovirus in silkworm. Aquaculture. 256: 433–442.

    Article  CAS  Google Scholar 

  21. Ko, H., W. Park, D. J. Kim, M. Kobayashi, and Y. C. Shon (2007) Biological activities of recombinant Manchurian trout FSH and LH: their receptor specificity, steroidogenic and vitellogenic potencies. J. Mol. Endocrinol. 38: 99–111.

    Article  CAS  Google Scholar 

  22. Kazeto, Y., M. Kohara, T. Miura, C. Miura, S. Yamaguchi, J. M. Trant, S. Adachi, and K. Yamauchi (2008) Japanese Eel follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh): Production of biologically active recombinant Fsh and Lh by Drosophila S2 cells and their differential actions on the reproductive biology. Bio. Reprod. 79: 938–946.

    Article  CAS  Google Scholar 

  23. Thotakura, N. R. and D. L. Blithe (1995) Glycoprotein hormones: glycobiology of gonadotrophins, thyrotrophins and free alpha subunit. Glycobiology. 5: 3–10.

    Article  CAS  Google Scholar 

  24. Kobayashi, M., Y. Hayakawa, W. Park, A. Banba, G. Yoshizaki, K. Kumamaru, H. Kagawa, H. Kaki, H. Nagaya, and Y. C. Sohn (2010) Production of recombinant Japanese eel gonadotropins by baculovirus in silkworm larvae. Gen. Comp. Endocrinol. 167: 379–386.

    Article  CAS  Google Scholar 

  25. Marinuk, S. D., A. W. Manning, W. D. Black, and B. D. Murphy (1991) Effects of carbohydrates on the pharmacokinetics and biological activity of equine chorionic gonadotropin in vivo. Biol. Reprod. 45: 598–604.

    Article  Google Scholar 

  26. Green, E. D., I. Boime, and J. U. Baenaiger (1986) Differential processing of Asn-linked oligosaccharides on pituitary glycoprotein hormones: implications for biologic function. Mol. Cell Biochem. 72: 81–100.

    Article  CAS  Google Scholar 

  27. Ulloa-Aguirre, A., C. Timossi, P. Damian-Matsumura, and J. A. Dias (1999) Role of glycosylation in function of follicle-stimulating hormone. Endocrine. 11: 205–215.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) through Agri-Bio industry Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA, 11803422) and the National Institute of Fisheries Science (NIFS; R2019031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Mee Hong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material (ESM)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, S.M., Choi, JH., Jo, SJ. et al. Heterologous Production and Glycosylation of Japanese Eel Follitropin Using Silkworm. Biotechnol Bioproc E 24, 745–753 (2019). https://doi.org/10.1007/s12257-019-0045-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0045-2

Keywords

Navigation