Biotechnology and Bioprocess Engineering

, Volume 24, Issue 3, pp 483–487 | Cite as

Complete Genome Sequence of Lactic Acid Bacterium Pediococcus acidilactici Strain ATCC 8042, an Autolytic Anti-bacterial Peptidoglycan Hydrolase Producer

  • Sung Won Cho
  • Jina Yang
  • Sungwoo Park
  • Beomhee Kim
  • Sang Woo SeoEmail author
Research Paper


Pediococcus acidilactici is a probiotic bacterium that is industrially utilized in the food industry and antibiotics development. Here, we determine the complete nucleotide sequence of the genome of Pediococcus acidilactici ATCC 8042. The genome was sequenced by the PacBio RSII to generate a single contig consisting of circular chromosome sequence. Illumina MiniSeq sequencing platform and Sanger sequencing method were additionally utilized to correct errors resulting from the long-read sequencing platform. The sequence consists of 2,009,598 bp with a G + C content of 42.1% and contains 1,865 protein-coding sequences. Based on the sequence information, we could confirm and predict the presence of four peptidoglycan hydrolases by HyPe software. This work, therefore, provides the complete genomic information of P. acidilactici ATCC 8042 with a profitable potential of genome-scale comprehension of anti-pathogenic activity, which can be applied in nutraceutical and pharmaceutical biotechnology field.


Pediococcus acidilactici ATCC 8042 complete genome sequence peptidoglycan hydrolase antimicrobial activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the Bio & Medical Technology Development Program (NRF-2018M3A9H3020459) of the National Research Foundation (NRF) funded by Ministry of Science and ICT (MSIT) and the Next-Generation BioGreen 21 Program (PJ01323601) funded by Rural Development Administration and Creative-Pioneering Researchers Program through Seoul National University (SNU).


  1. 1.
    Charchoghlyan, H., J. Bae, H. Kwon, and K. Myunghee (2017) Rheological properties and volatile composition of fermented milk prepared by exopolysaccharide-producing Lactobacillus acidophilus n.v. Er2 317/402 strain narine. Biotechnology and Bioprocess Engineering. 22: 327–338.CrossRefGoogle Scholar
  2. 2.
    Mikulski, D., J. Jankowski, J. Naczmanski, M. Mikulska, and V. Demey (2012) Effects of dietary probiotic (Pediococcus acidilactici) supplementation on performance, nutrient digestibility, egg traits, egg yolk cholesterol, and fatty acid profile in laying hens. Poult Sci. 91: 2691–2700.CrossRefGoogle Scholar
  3. 3.
    Anastasiadou, S., M. Papagianni, G. Filiousis, I. Ambrosiadis, and P. Koidis (2008) Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: production conditions, purification and characterization. Bioresour Technol. 99: 5384–5390.CrossRefGoogle Scholar
  4. 4.
    Klaenhammer, T. R. (1993) Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiol Rev. 12: 39–85.CrossRefGoogle Scholar
  5. 5.
    Ferguson, R. M., D. L. Merrifield, G. M. Harper, M. D. Rawling, S. Mustafa, S. Picchietti, et al. (2010) The effect of Pediococcus acidilactici on the gut microbiota and immune status of on-growing red tilapia (Oreochromis niloticus). J. Appl. Microbiol. 109: 851–862.CrossRefGoogle Scholar
  6. 6.
    Papagianni, M. and S. Anastasiadou (2009) Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microb. Cell Fact. 8: 3.CrossRefGoogle Scholar
  7. 7.
    Galvez, A., H. Abriouel, R. L. Lopez, and N. Ben Omar (2007) Bacteriocin-based strategies for food biopreservation. Int. J. Food Microbiol. 120: 51–70.CrossRefGoogle Scholar
  8. 8.
    Mora, D., M. G. Fortina, C. Parini, D. Daffonchio, and P. L. Manachini (2000) Genomic subpopulations within the species Pediococcus acidilactici detected by multilocus typing analysis: relationships between pediocin AcH/PA-1 producing and non-producing strains. Microbiology. 146 (Pt 8): 2027–2038.CrossRefGoogle Scholar
  9. 9.
    Garcia-Cano, I., L. Velasco-Perez, R. Rodriguez-Sanoja, S. Sanchez, G. Mendoza-Hernandez, A. Llorente-Bousquets, et al. (2011) Detection, cellular localization and antibacterial activity of two lytic enzymes of Pediococcus acidilactici ATCC 8042. J. Appl. Microbiol. 111: 607–615.CrossRefGoogle Scholar
  10. 10.
    John Ndayishimiye, D. J. L. and B. S. Chun (2017) Impact of extraction conditions on bergapten content and antimicrobial activity of oils obtained by a co-extraction of citrus by-products using supercritical carbon dioxide. Biotechnology and Bioprocess Engineering. 22: 586–596.CrossRefGoogle Scholar
  11. 11.
    Garcia-Cano, I., M. Campos-Gomez, M. Contreras-Cruz, C. E. Serrano-Maldonado, A. Gonzalez-Canto, C. Pena-Montes, et al. (2015) Expression, purification, and characterization of a bifunctional 99-kDa peptidoglycan hydrolase from Pediococcus acidilactici ATCC 8042. Appl Microbiol Biotechnol. 99: 8563–8573.CrossRefGoogle Scholar
  12. 12.
    Optimization of technical conditions for the transformation of Pediococcus acidilactici P60 by electroporation.Google Scholar
  13. 13.
    Deatherage, D. E. and J. E. Barrick (2014) Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq. Methods Mol. Biol. 1151: 165–188.CrossRefGoogle Scholar
  14. 14.
    Aziz, R. K., D. Bartels, A. A. Best, M. DeJongh, T. Disz, R. A. Edwards, et al. (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 9: 75.CrossRefGoogle Scholar
  15. 15.
    Seemann, T. (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics. 30: 2068–2069.CrossRefGoogle Scholar
  16. 16.
    Huerta-Cepas, J., D. Szklarczyk, D. Heller, A. Hernandez-Plaza, S. K. Forslund, H. Cook, et al. (2018) eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. Google Scholar
  17. 17.
    Sharma, A. K., S. Kumar, K. Harish, D. B. Dhakan, and V. K. Sharma (2016) Prediction of peptidoglycan hydrolases- a new class of antibacterial proteins. BMC Genomics. 17: 411.CrossRefGoogle Scholar
  18. 18.
    Zhu, W., A. Lomsadze, and M. Borodovsky (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38: e132.CrossRefGoogle Scholar
  19. 19.
    Si, J.-B., E.-J. Jang, D. Charalampopoulos, Y.-J. Wee (2018) Purification and characterization of microbial protease produced extracellularly from Bacillus subtilis FBL-1. Biotechnology and Bioprocess Engineering. 23: 176–182.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer 2019

Authors and Affiliations

  • Sung Won Cho
    • 1
  • Jina Yang
    • 2
  • Sungwoo Park
    • 1
  • Beomhee Kim
    • 1
  • Sang Woo Seo
    • 1
    • 2
    Email author
  1. 1.School of Chemical and Biological EngineeringSeoul National UniversitySeoulKorea
  2. 2.Institute of Chemical ProcessSeoul National UniversitySeoulKorea

Personalised recommendations