Skip to main content
Log in

Evaluating the Pathway for Co-fermentation of Glucose and Xylose for Enhanced Bioethanol Production Using Flux Balance Analysis

  • Research Paper
  • Metabolic Engineering and Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Two novel thermotolerant yeasts, Kluyveromyces marxianus NIRE-K1.1 and Kluyveromyces marxianus NIRE-K3.1, evolutionarily adapted for fermentation of glucose and xylose were analyzed for their metabolic fluxes with an objective of maximum ethanol production. Metabolic fluxes were analyzed for these thermotolerant yeasts by co-fermenting glucose/xylose mixture in two different ratios (1:1 and 4:1). Flux balance analysis revealed the active role of pentose phosphate pathway for effective xylose utilization in both yeasts. A comparison between co-fermentation of glucose/xylose mixtures in the ratio of 1:1 and 4:1 (g/L) reveals that the flux from glucose-6-phosphate to ribulose-5-phosphate was approximately 2.56-fold and 3.75-fold higher in 1:1 mixture in K. marxianus NIRE-K1.1 and K. marxianus NIRE-K3.1, respectively. Overall, flux towards pyruvate (for ethanol production) was found to be higher in both glucose/xylose mixtures 1:1 (1.87%) and 4:1 (0.89%) for K. marxianus NIRE-K3.1 than K. marxianus NIRE-K1.1. Tricarboxylic Acid (TCA) cycle was also found to be incomplete for both the isolates which signify that most of the available substrates were utilized for ethanol production rather than biomass formation. Moreover, it was also observed that in both, the ethanol yields were found to be higher in case of K. marxianus NIRE-K3.1 than K. marxianus NIRE-K1.1, however, xylose uptake rates were higher in the later as compared to the former. Thus, this study concludes with the capable potential of both the yeasts for the production of bioethanol from glucose/xylose mixtures with higher yield and is highly correlated to the relative concentration of both xylose and glucose in a mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

1,3BPG:

1,3-Biphosphoglycerate

2PG:

2-Phosphoglycerate

3PG:

3-Phosphoglycerate

ACCOA:

Acetyl CoA

ACET:

Acetaldehyde

ACT:

Acetate

AKG:

α-ketoglutarate

DHAP:

Dihydroxyacetone Phosphate

E4P:

Erythrose-4-Phosphate

EMP:

Embden Meyehoff Parnas

ETH:

Ethanol

F1,6BP:

Fructose-1,6-Bis Phosphate

F6P:

Fructose-6-Phosphate

FBA:

Flux Balance Analysis

FAD:

Flavin Adenine Dinucleotide

FDH:

Formate dehydrogenase

G3P:

Glyceraldehyde-3-Phosphate

G6P:

Glucose-6-Phosphate

GLU:

Glucose

GLY:

Glycerol

GPD:

glycerol-3-phosphate dehydrogenases

ICIT:

Isocitrate

NAD:

Nicotinamide adenine dinucleotide

OAA:

Oxaloacetate

PEP:

Phosphoenol pyruvate

PPP:

Pentose phosphate pathway

PYR:

Pyruvate

RIB5P:

Ribose-5-Phosphate

RIBU5P:

Ribulose-5-Phosphate

SED7P:

Sedoheptulose-7-Phosphate

SUCC:

Succinate

SUCCOA:

Succinyl CoA

TCA:

Tricarboxylic acid

XYL:

Xylose

XYL5P:

Xylulose-5-Phosphate

XYLE:

Xylitol (Extracellular)

XYLI:

Xylitol (Intracellular)

XYLU:

Xylulose

References

  1. Arora, R., S. Behera, N. K. Sharma, and S. Kumar (2015) Bioprospecting thermostable cellulosomes for efficient biofuel production from lignocellulosic biomass. Bioresour. Bioprocess. 2: 38.

    Article  Google Scholar 

  2. Behera, S., R. Arora, N. Nandhagopal, and S. Kumar (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sustain. Energy Rev. 36: 91–106.

    Article  CAS  Google Scholar 

  3. Woo, H. L., T. C. Hazen, B. A. Simmons, and K. M. De Angelis (2014) Enzyme activities of aerobic lignocellulolytic bacteria isolated from wet tropical forest soils. Syst Appl Microbiol. 37: 60–67.

    Article  CAS  PubMed  Google Scholar 

  4. Arora, R., S. Behera, N. K. Sharma, R. Singh, Y. K. Yadav, and S. Kumar (2014) Biochemical conversion of rice straw (Oryza sativa L.) to bioethanol using thermotolerant isolate K. marxianus NIRE-K3. Proceedings of Conference on Exploring Basic & Applied Sciences for Next Generation Frontiers. November 14–15. Punjab, India.

  5. Arora, R., S. Behera, and S. Kumar (2015) Bioprospecting thermophilic/thermotolerant microbes for production of lignocellulosic ethanol: A future perspective. Renew. Sustain. Energy Rev. 51: 699–717.

    Article  CAS  Google Scholar 

  6. Kumar, S., P. Dheeran, S. P. Singh, I. M. Mishra, and D. K. Adhikari (2013) Cooling system economy in ethanol production using thermotolerant yeast Kluyveromyces sp. IIPE453. Am. J. Microbiol. Res. 1: 39–44.

    Article  CAS  Google Scholar 

  7. Kuhad, R. C., R. Gupta, Y. P. Khasa, A. Singh, and Y. H. P. Zhang (2011) Bioethanol production from pentose sugars: current status and future prospects. Renew. Sustain. Energy Rev. 15: 4950–4962.

    Article  CAS  Google Scholar 

  8. Balat, M. (2011) Production of bioethanol from lignocellulosic materials via the biochemical pathway: A review. Energy Convers. Manag. 52: 858–875.

    Article  CAS  Google Scholar 

  9. Wisselink, H. W., C. Cipollina, B. Oud, B. Crimi, J. J. Heijnen, J. T. Pronk, and A. J. A. van Maris (2010) Metabolome, transcriptome and metabolic flux analysis of arabinose fermentation by engineered Saccharomyces cerevisiae. Metab. Eng. 12: 537–551.

    Article  CAS  PubMed  Google Scholar 

  10. Feng, X. and H. Zhao (2013) Investigating xylose metabolism in recombinant Saccharomyces cerevisiae via 13C metabolic flux analysis. Microb. Cell Fact. 12: 114.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kumar, S., S. P. Singh, I. M. Mishra, and D. K. Adhikari (2009) Ethanol and xylitol production from glucose and xylose at high temperature by Kluyveromyces sp. IIPE453. J. Ind. Microbiol. Biotechnol. 36: 1483–1489.

    Article  CAS  PubMed  Google Scholar 

  12. Arora, R., S. Behera, N. K. Sharma, and S. Kumar (2015) A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front. Microbiol. 6: 889.

    PubMed  PubMed Central  Google Scholar 

  13. Sharma, N. K., S. Behera, R. Arora, and S. Kumar (2016) Enhancement in xylose utilization using Kluyveromyces marxianus NIRE-K1 through evolutionary adaptation approach. Bioprocess Biosyst. Eng. 39: 835–843.

    Article  CAS  PubMed  Google Scholar 

  14. Manish, S., K. V. Venkatesh, and R. Banerjee (2007) Metabolic flux analysis of biologically hydrogen production by Escherichia coli. Int. J. Hydrogen. Energy. 32: 3820–3830.

    Article  CAS  Google Scholar 

  15. Klapa, M. I. (2010) Metabolic flux analysis. pp. 15: 1–17. In: C. D. Smolke (ed.). The Metabolic Pathway Engineering Handbook. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  16. Chen, X., A. P. Alonso, D. K. Allen, J. L. Reed, and Y. Shachar-Hill (2011) Synergy between 13C-metabolic flux analysis and flux balance analysis for understanding metabolic adaptation to anaerobiosis in E. coli. Metab. Eng. 13: 38–48.

    Article  PubMed  CAS  Google Scholar 

  17. Edwards, J. S., M. Covert, and B. O. Palsson (2002) Metabolic modeling of microbes: the flux-balance approach. Environ. Microbiol. 4: 133–140.

    Article  PubMed  Google Scholar 

  18. Liu, Z., Y. Gao, J. Chen, T. Imanaka, J. Bao, and Q. Hua (2013) Analysis of metabolic fluxes for better understanding of mechanisms related to lipid accumulation in oleaginous yeast Trichosporon cutaneum. Bioresour. Technol. 130: 144–151.

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, H. H., L. M. Whang, Q. A. Lin, I. C. Liu, and Q. W. Wu (2013) Metabolic flux network analysis of fermentative hydrogen production: Using Clostridium tyrobutyricum as an example. Bioresour. Technol. 141: 233–239.

    Article  CAS  PubMed  Google Scholar 

  20. Rafieenia, R. and S. R. Chaganti (2015) Flux balance analysis of different carbon source fermentation with hydrogen producing Clostridium butyricum using cell net analyzer. Bioresour. Technol. 175: 613–618.

    Article  CAS  PubMed  Google Scholar 

  21. Hohenschuh, W., R. Hector, and G. S. Murthy (2015) A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae. Bioresour. Technol. 188: 153–160.

    Article  CAS  PubMed  Google Scholar 

  22. Hendry, J. I., C. B. Prasannan, A. Joshi, S. Dasgupta, and P. P. Wangikar (2016) Metabolic model of Synechococcus sp. PCC 7002: prediction of flux distribution and network modification for enhanced biofuel production. Bioresour. Technol. 213: 190–197.

    Article  CAS  PubMed  Google Scholar 

  23. Zhang, L., Y. Xu, J. Gao, H. Xu, C. Cao, F. Xue, G. Ding, and Y. Peng (2016) Introduction of the exogenous NADH coenzyme regeneration system and its influence on intracellular metabolic flux of Paenibacilluspolymyxa. Bioresour. Technol. 201: 319–328.

    Article  CAS  PubMed  Google Scholar 

  24. Niu, K., X. Zhang, W. S. Tan, and M. L. Zhu (2011) Effect of culture conditions on producing and uptake hydrogen flux of biohydrogen fermentation by metabolic flux analysis method. Bioresour. Technol. 102: 7294–7300.

    Article  CAS  PubMed  Google Scholar 

  25. Zhao, H., Y. Lu, L. Wang, C. Zhang, C. Yang, and X. Xing (2015) Disruption of lactate dehydrogenase and alcohol dehydrogenase for increased hydrogen production and its effect on metabolic flux in Enterobacter aerogenes. Bioresour. Technol. 194: 99–107.

    Article  CAS  PubMed  Google Scholar 

  26. Salvetti, E., M. Fondi, R. Fani, S. Torriani, and G. E. Felis (2013) Evolution of lactic acid bacteria in the order Lactobacillales as depicted by analysis of glycolysis and pentose phosphate pathways. Syst. Appl. Microbiol. 36: 291–305.

    Article  CAS  PubMed  Google Scholar 

  27. Granstrom, T., A. A. Aristidou, and M. Leisola (2002) Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab. Eng. 4: 248–256.

    Article  CAS  PubMed  Google Scholar 

  28. Cakir, T., K. Y. Arga, M. M. Altintas, and K. O. Ulgen (2004) Flux analysis of recombinant Saccharomyces cerevisiae YPB-G utilizing starch for optimal ethanol production. Process Biochem. 39: 2097–2108.

    Article  CAS  Google Scholar 

  29. Sharma, N. K., S. Behera, R. Arora, and S. Kumar (2017) Evolutionary adaptation of Kluyveromyces marxianus NIRE-K3 for enhanced xylose utilization. Front. Energy Res. 5: 32.

    Article  Google Scholar 

  30. Pitkanen, J. P, A. Aristidou, L. Salusjarvi, L. Ruohonen, and M. Penttila (2003) Metabolic flux analysis of xylose metabolism in recombinant Saccharomyces cerevisiae using continuous culture. Metab. Eng. 5: 16–31.

    Article  CAS  PubMed  Google Scholar 

  31. Fowler, Z. L., E. Leonard, and M. Koffas (2010) Biosynthesis of cellular building blocks: The prerequisites of life. pp. 3: 1–32. In: C. D. Smolke (ed.). The Metabolic Pathway Engineering Handbook. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  32. Fonseca, G. G., A. K. Gombert, E. Heinzle, and C. Wittmann (2007) Physiology of the yeast Kluyveromyces marxianus during batch and chemostat cultures with glucose as the sole carbon source. FEMS Yeast Res. 7: 422–435.

    Article  CAS  PubMed  Google Scholar 

  33. Stephanopoulos, G., A. A. Aristidou, and J. Nielsen (1998) Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA, USA.

    Google Scholar 

  34. Sauer, U., D. R. Lasko, J. Fiaux, M. Hochuli, R. Glaser, T. Szyperski, K. Wuthrich, and J. E. Bailey (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J. Bacteriol. 181: 6679–6688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Arora, R., S. Behera, N. K. Sharma, and S. Kumar (2017) Augmentation of ethanol production through statistically designed growth and fermentation medium using novel thermotolerant yeast isolates. Renew Energy. 109: 406–421.

    Article  CAS  Google Scholar 

  36. Behera, S., R. Arora, N. K. Sharma, and S. Kumar (2014) Fermentation of glucose and xylose sugar for the production of ethanol and xylitol by the newly isolated NIRE-GX1 yeast. pp. 175–182. In: S. Kumar, A. K. Sarma, S. K. Tyagi, and Y. K. Yadav (eds.). Recent Advances in Bio-energy Research Vol. III. SSS-NIRE, Kapurthala, India.

    Google Scholar 

  37. Tanimura, A., T. Nakamura, I. Watanabe, J. Ogawa, and J. Shima (2012) Isolation of a novel strain of Candida shehatae for ethanol production at elevated temperature. SpringerPlus. 1: 27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ozcan, S. and M. Johnston (1999) Function and regulation of yeast hexose transporters. Microbiol. Mol Biol Rev. 63: 554–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sharma, N. K., S. Behera, R. Arora, S. Kumar, and R. K. Sani (2018) Xylose transport in yeast for lignocellulosic ethanol production: current status. J. Biosci. Bioeng. 125: 259–267.

    Article  CAS  PubMed  Google Scholar 

  40. Ozcan, S. and M. Johnston (1995) Three different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell Biol. 15: 1564–1572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozcan, S. and M. Johnston (1996) Two different repressors collaborate to restrict expression of the yeast glucose transporter genes HXT2 and HXT4 to low levels of glucose. Mol. Cell Biol. 16: 5536–5545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Serrano, R. and G. Delafuente (1974) Regulatory properties of the constitutive hexose transport in Saccharomyces cerevisiae. Mol. Cell Biochem. 5: 161–171.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang, Y., Z. Huang, C. Du, Y. Li, and Z. Cao (2009) Introduction of an NADH regeneration system into Klebsiella oxytoca leads to an enhanced oxidative and reductive metabolism of glycerol. Metab. Eng. 11: 101–106.

    Article  PubMed  CAS  Google Scholar 

  44. Hou, J., G. Scalcinati, M. Oldiges, and G. N. Vemuri (2010) Metabolic impact of increased NADH availability in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 76: 851–859.

    Article  CAS  PubMed  Google Scholar 

  45. Geertman, J. M., J. P. van Dijken, and J. T. Pronk (2006) Engineering NADH metabolism in Saccharomyces cerevisiae: formate as an electron donor for glycerol production by anaerobic, glucose-limited chemostat cultures. FEMS Yeast Res. 6: 1193–1203.

    Article  CAS  PubMed  Google Scholar 

  46. Nissen, T. L., C. W. Hamann, M. C. Kielland-Brandt, J. Nielsen, and J. Villadsen (2000) Anaerobic and aerobic batch cultivations of Saccharomyces cerevisiae mutants impaired in glycerol synthesis. Yeast. 16: 463–474.

    Article  CAS  PubMed  Google Scholar 

  47. Jain, V. K., B. Divol, B. A. Prior, and F. F. Bauer (2012) Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant. Appl. Microbiol. Biotechnol. 93: 131–141.

    Article  PubMed  CAS  Google Scholar 

  48. Mayer, G., K. D. Kulbe, and B. Nidetzky (2002) Utilization of xylitol dehydrogenase in a combined microbial/enzymatic process for production of xylitol from D-glucose. Appl. Biochem. Biotechnol. 98: 577–589.

    Article  PubMed  Google Scholar 

  49. Sakakibara, Y., B. C. Saha, and P. Taylor (2009) Microbial production of xylitol from L-arabinose by metabolically engineered Escherichia coli. J. Biosci. Bioeng. 107: 506–511.

    Article  CAS  PubMed  Google Scholar 

  50. Li, H., J. Su, W. Ma, A. Guo, Z. Shan, and H. Wang (2015) Metabolic flux analysis of Saccharomyces cerevisiae in a sealed winemaking fermentation system. FEMS Yeast Res. 15: fou010.

    PubMed  Google Scholar 

  51. Hayakawa, K., F. Matsuda, and H. Shimizu (2018) 13C-metabolic flux analysis of ethanol-assimilating Saccharomyces cerevisiae for S-adenosyl-L-methionine production. Microb. Cell Fact. 17: 82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Pfau, T., M. P. Pacheco, and T. Sauter (2016) Towards improved genome-scale metabolic network reconstructions: unification, transcript specificity and beyond. Brief Bioinform. 17: 1060–1069.

    CAS  PubMed  Google Scholar 

  53. Ravikrishnan, A. and K. Raman (2015) Critical assessment of genome-scale metabolic networks: the need for a unified standard. Brief Bioinform. 16: 1057–1068.

    Article  CAS  PubMed  Google Scholar 

  54. Tomas-Gamisans, M., P. Ferrer, and J. Albiol (2016) Integration and validation of the genome-scale metabolic models of Pichia pastoris: A comprehensive update of protein glycosylation pathways, lipid and energy metabolism. PLoS One. 11: e0148031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Marcisauskas, S., B. Ji, and J. Nielsen (2019) Reconstruction and analysis of a Kluyveromyces marxianus genome-scale metabolic model. BioRxiv. 581587.

  56. Ghosh, A., H. Zhao, and N. D. Price (2011) Genome-scale consequences of cofactor balancing in engineered pentose utilization pathways in Saccharomyces cerevisiae. PLoS One. 6: e27316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bordel, S., R. Agren, and J. Nielsen (2010) Sampling the solution space in genome-scale metabolic networks reveals transcriptional regulation in key enzymes. PLoS Comput. Biol. 6: e1000859.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Ministry of New and Renewable Energy, Govt. of India to pursue the research activities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar.

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, R., Behera, S., Sharma, N.K. et al. Evaluating the Pathway for Co-fermentation of Glucose and Xylose for Enhanced Bioethanol Production Using Flux Balance Analysis. Biotechnol Bioproc E 24, 924–933 (2019). https://doi.org/10.1007/s12257-019-0026-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0026-5

Keywords

Navigation