Skip to main content
Log in

Development of a Microdilution Device with One-step Dilution of Cytochalasin-B for Treating ORL-48 Cancer Microtissues

  • Research Paper
  • Biomedical Engineering
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Mixing and dilution are essential procedures in pharmaceutical operation to aliquot two or more components serially to produce less concentrated and well mixed solutions. However, conventional serial dilution method used in laboratory is tedious and utilized large quantity of plasticwares. In this study, a two-tier microdilution device with two inlets and four outlets was designed, simulated, and prototyped to dilute Cytochalasin-B (CB). Using the microdilution device, CB in linear concentration gradients were produced based on one-step dilution method. The different concentrations of CB were applied to treat monolayer and microtissues of ORL-48 cells. The morphological responses, cell viability and cell proliferation of ORL-48 monolayer cells (2D) and microtissues (3D) treated in four different CB concentrations were investigated via phase contrast microscopy, live/dead stainings, and Alamar Blue® assay, respectively. The results showed that 2D ORL-48 cells were morphologically affected but 3D ORL-48 cells stayed viable and proliferative after treated with similar concentrations of CB. The microdilution device enables serial dilutions to produce reagents in linear concentration gradients via a one-step dilution method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeong, G. S., S. Chung, C. B. Kim, and S. H. Lee (2010) Applications of micromixing technology. Analyst. 135: 460–473.

    CAS  PubMed  Google Scholar 

  2. Chase, G. R. and D. G. Hoel (1975) Serial dilutions: Error effects and optimal designs. Biometrika. 62: 329–334.

    Google Scholar 

  3. Lyman, K., D. Fisher, Y. Han, and D. M. Chetkovich (2015) A novel method for reducing human pipetting errors. J. Med. Lab. Diagn. 6: 36–40.

    Google Scholar 

  4. Wu, Z. (2015) Entangled sciences: the art of microfluidic mixing and separation. J. Micromech. Microeng. 25: 120301.

    Google Scholar 

  5. Gambhire, S., N. Patel, G. Gambhire, and S. Kale (2016) A review on different micromixers and its micromixing within microchannel. Int. J. Curr. Eng. Technol. Special Issue-4: 409–413.

  6. Ansari, M. A., K. Y. Kim, and S. M. Kim (2018) Numerical and experimental study on mixing performances of simple and vortex micro T-mixers. Micromachines. 9: 204.

    PubMed Central  Google Scholar 

  7. Glasgow, I. and N. Aubry (2003) Enhancement of microfluidic mixing using time pulsing. Lab. Chip. 3: 114–120.

    CAS  PubMed  Google Scholar 

  8. Oddy, M., J. Santiago, and J. Mikkelsen (2001) Electrokinetic instability micromixing. Anal. Chem. 73: 5822–5832.

    CAS  PubMed  Google Scholar 

  9. Goet, G., T. Baier, and S. Hardt (2009) Micro-contactor based on isotachophoretic sample transport. Lab. Chip. 9: 3586–3593.

    CAS  PubMed  Google Scholar 

  10. Paik, P., V. K. Pamula, M. G. Pollack, and R. B. Fair (2003) Electrowetting-based droplet mixers for microfluidic systems. Lab. Chip. 3: 28–33.

    CAS  PubMed  Google Scholar 

  11. West, J., B. Karamata, B. Lillis, J. P. Gleeson, J. Alderman, J. K. Collins, W. Lane, A. Mathewson, and H. Berney (2002) Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab. Chip. 2: 224–230.

    CAS  PubMed  Google Scholar 

  12. Kamholz, A. E., B. H. Weigl, B. A. Finlayson, and P. Yager (1999) Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Anal. Chem. 71: 5340–5347.

    CAS  PubMed  Google Scholar 

  13. Erbacher, C., F. G. Bessoth, M. Busch, E. Verpoorte, and A. Manz (1999) Towards integrated continuous-flow chemical reactors. Microchim. Acta. 131: 19–24.

    CAS  Google Scholar 

  14. Wei, F. F. and J. T. Yang (2009) A novel microreactor with 3D rotating flow to boost fluid reaction and mixing of viscous fluids. Sens Actuators B Chem. 140: 629–642.

    Google Scholar 

  15. He, B., B. J. Burke, X. Zhang, R. Zhang, and F. E. Regnier (2001) A picoliter-volume mixer for microfluidic analytical systems. Anal. Chem. 73: 1942–1947.

    CAS  PubMed  Google Scholar 

  16. Ottino, J. M. (1989) The Kinematics of Mixing: Stretching, Chaos, and Transport. 3rd ed., pp. 220–239. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  17. Yobas, L., S. Martens, W. L. Ong, and N. Ranganathan (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab. Chip. 6: 1073–1079.

    CAS  PubMed  Google Scholar 

  18. Lee, C. Y., C. L. Chang, Y. N. Wang, and L. M. Fu (2011) Microfluidic mixing: a review. Int. J. Mol. Sci. 12: 3263–3287.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Sivashankar, S., S. Agambayev, Y. Mashraei, E. Q. Li, S. T. Thoroddsen, and K. N. Salama (2016) A “twisted” microfluidic mixer suitable for a wide range of flow rate applications. Biomicrofluidics. 10: 034120.

    PubMed  PubMed Central  Google Scholar 

  20. You, J. B., K. Kang, T. T. Tran, H. Park, W. R. Hwang, J. M. Kim, and S. G. Im (2015) PDMS-based turbulent microfluidic mixer. Lab. Chip. 15: 1727–1735.

    CAS  PubMed  Google Scholar 

  21. Sundberg, S. A. (2000) High-throughput and ultra-high-throughput screening: solution- and cell-based approaches. Curr. Opin. Biotechnol. 11: 47–53.

    CAS  PubMed  Google Scholar 

  22. Burke, B. J. and F. E. Regnier (2003) Stopped-flow enzyme assays on a chip using a microfabricated mixer. Anal. Chem. 75: 1786–1791.

    CAS  PubMed  Google Scholar 

  23. Lu, H., M. A. Schmidt, and K. F. Jensen (2005) A microfluidic electroporation device for cell lysis. Lab. Chip. 5: 23–29.

    CAS  PubMed  Google Scholar 

  24. Hsu, C.-H. and A. Folch (2006) Spatio-temporally-complex concentration profiles using a tunable chaotic micromixer. Appl. Phys. Lett. 89: 144102.

    Google Scholar 

  25. Hadd, A. G., D. E. Raymond, J. W. Halliwell, S. C. Jacobson, and J. M. Ramsey (1997) Microchip device for performing enzyme assays. Anal. Chem. 69: 3407–3412.

    CAS  PubMed  Google Scholar 

  26. Dittrich, P. S., K. Tachikawa, and A. Manz (2006) Micro total analysis systems. Latest advancements and trends. Anal. Chem. 78: 3887–3908.

    CAS  PubMed  Google Scholar 

  27. Zhang, Z. and S. Nagrath (2013) Microfluidics and cancer: are we there yet? Biomed. Microdevices. 15: 595–609.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Pavesi, A., G. Adriani, A. Tay, M. E. Warkiani, W. H. Yeap, S. C. Wong, and R. D. Kamm (2016) Engineering a 3D microfluidic culture platform for tumor-treating field application. Sci. Rep. 6: 26584.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferlay, J., H. R. Shin, F. Bray, D. Forman, C. Mathers, and D. M. Parkin (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer. 127: 2893–2917.

    CAS  PubMed  Google Scholar 

  30. Hutchinson, L. and R. Kirk (2011) High drug attrition rates—where are we going wrong? Nat. Rev. Clin. Oncol. 8: 189–190.

    PubMed  Google Scholar 

  31. Hwang, J., M. Yi, X. Zhang, Y. Xu, J. H. Jung, and D. K. Kim (2013) Cytochalasin B induces apoptosis through the mitochondrial apoptotic pathway in HeLa human cervical carcinoma cells. Oncol Rep. 30: 1929–1935.

    CAS  PubMed  Google Scholar 

  32. Tong, Z. G., N. Liu, H. S. Song, J. Q. Li, J. Jiang, J. Y. Zhu, and J. P. Qi. (2014) Cytochalasin B inhibits the proliferation of human glioma U251 cells through cell cycle arrest and apoptosis cervical carcinoma cells. Genet. Mol. Res. 13: 10811–10822.

    CAS  PubMed  Google Scholar 

  33. Cai, G., L. Xue, H. Zhang, and J. Lin (2017) A review on micromixers. Micromachines. 8: 274.

    PubMed Central  Google Scholar 

  34. Sundra, S., C. F. Soon, N. Zainal, K. S. Tee, N. Ahmad, and S. H. Gan (2017) The effects of micromixing two solutions of two concentrations in a two tier PDMS micromixer. IOP Conf. Ser.: Mater. Sci. Eng. 226: 012121

    Google Scholar 

  35. Soon, C. F., H. Y. Yap, M. K. Ahmad, K. S. Tee, and S. H. Gan (2017) Development of a microfluidic device system using adhesive vinyl template to produce calcium alginate microbeads for microencapsulation of cells. pp. 477–482 In: R. Jabłoński and R. Szewczyk (eds.). Recent Global Research and Education: Technological Challenges: Proceedings of the 15th International Conference on Global Research and Education Inter-Academia 2016. Springer International Publishing, Cham, Switzerland.

    Google Scholar 

  36. Wong, S. C., C. F. Soon, W. Y. Leong, and K. S. Tee (2016) Flicking technique for microencapsulation of cells in calcium alginate leading to the microtissue formation. J. Microencapsul. 33: 162–171.

    CAS  PubMed  Google Scholar 

  37. Soon, C. F., S. C. Wong, W. Y. Leong, K. A. Mohd, and K. S. Tee (2016) A flicking method for generation of polymer microbeads. JJAP Conf. Proc. 4: 011110.

    Google Scholar 

  38. Al-Nasiry, S., N. Geusens, M. Hanssens, C. Luyten, and R. Pijnenborg (2007) The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum. Reprod. 22: 1304–1309.

    CAS  PubMed  Google Scholar 

  39. Jeon, N. L., S. K. W. Dertinger, D. T. Chiu, I. S. Choi, A. D. Stroock, and G. M. Whitesides (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir. 16: 8311–8316.

    CAS  Google Scholar 

  40. Doumas, B. T., W. A. Watson, and H. G. Biggs (1971) Albumin standards and the measurement of serum albumin with bromcresol green. Clin. Chim. Acta. 31: 87–96.

    CAS  PubMed  Google Scholar 

  41. Spence, M. T. and I. D. Johnson (2010) The Molecular Probes Handbook: A Guide to Fluorescent Probes and Labeling Technologies. 11th ed., pp. 656–657. Live Technologies Corporation, Carlsbad, CA, USA.

    Google Scholar 

  42. Trendowski, M. (2015) Using cytochalasins to improve current chemotherapeutic approaches. Anticancer Agents Med. Chem. 15: 327–335.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Rampersad, S. N. (2012) Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel). 12: 12347–12360.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Kobel, S. and M. P. Lutolf (2011) Biomaterials meet microfluidics: building the next generation of artificial niches. Curr. Opin. Biotechnol. 22: 690–697.

    CAS  PubMed  Google Scholar 

  45. Ziolkowska, K., E. Jedrych, R. Kwapiszewski, J. Lopacinska, M. Skolimowski, and M. Chudy (2010) PDMS/glass microfluidic cell culture system for cytotoxicity tests and cells passage. Sens Actuators B Chem. 145: 533–542.

    CAS  Google Scholar 

  46. Soon, C. F., W. I. Wan Omar, N. Nayan, H. Basri, M. Narawi, and K. S. Tee (2013) A bespoke contact angle measurement software and experimental setup for determination of surface tension. Procedia Technol. 11: 487–494.

    Google Scholar 

  47. Sia, S. K. and G. M. Whitesides (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis. 24: 3563–3576.

    CAS  PubMed  Google Scholar 

  48. Thamphiwatana, S., T. Phairatana, S. Chirasatitsin, M. Samae, G. V. Casquillas, H. Al-Salami, S. Kojić, and G. M. Stojanović (2018) A microfluidic micromixer fabricated using polydimethylsiloxane-based platform for biomedical applications. J. Microelectron. Electron. Compon. Mater. 48: 173–179.

    Google Scholar 

  49. Trendowski, M., G. Yu, V. Wong, C. Acquafondata, T. Christen, and T. P. Fondy (2014) The real deal: using cytochalasin B in sonodynamic therapy to preferentially damage leukemia cells. Anticancer Res. 34: 2195–2202.

    CAS  PubMed  Google Scholar 

  50. Bousquet, P. F., L. A. Paulsen, C. Fondy, K. M. Lipski, K. J. Loucy, and T. P. Fondy (1990) Effects of cytochalasin B in culture and in vivo on murine Madison 109 lung carcinoma and on B16 melanoma. Cancer Res. 50: 1431–1439.

    CAS  PubMed  Google Scholar 

  51. Ojima, K., Z. X. Lin, I. R. de Andrade, M. L. Costa, and C. Mermelstein (2016) Distinctive effects of cytochalasin B in chick primary myoblasts and fibroblasts. PLoS One. 11: e0154109.

    PubMed  PubMed Central  Google Scholar 

  52. Somers, K. D. and M. M. Murphey (1982) Multinucleation in response to cytochalasin B: a common feature in several human tumor cell lines. Cancer Res. 42: 2575–2578.

    CAS  PubMed  Google Scholar 

  53. Theodoropoulos, P. A., A. Gravanis, A. Tsapara, A. N. Margioris, E. Papadogiorgaki, V. Galanopoulos, and C. Stournaras (1994) Cytochalasin B may shorten actin filaments by a mechanism independent of barbed end capping. Biochem. Pharmacol. 47: 1875–1881.

    CAS  PubMed  Google Scholar 

  54. Flanagan, M. D. and S. Lin (1980) Cytochalasins block actin filament elongation by binding to high affinity sites associated with F-actin. J. Biol. Chem. 255: 835–838.

    CAS  PubMed  Google Scholar 

  55. Carter, S. (1967) Effects of cytochalasins on mammalian cells. Nature. 213: 261–264.

    CAS  PubMed  Google Scholar 

  56. Fenech, M., M. Kirsch-Volders, A. T. Natarajan, J. Surralles, J. W. Crott, J. Parry, H. Norppa, D. A. Eastmond, J. D. Tucker, and P. Thomas (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis. 26: 125–132.

    CAS  PubMed  Google Scholar 

  57. Hosaka, S., M. Suzuki, and H. Sato (1980) Effects of cytochalasin B and colchicine on the motility and growth of Yoshida sarcoma cells in vitro. Sci. Rep. Res. Inst. Tohoku Univ. Med. 27: 27–31.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to express the deepest appreciation to the Ministry of Education (MOE), Malaysia for funding this project through Fundamental Research Grant Schemes (FRGS), Grant Vot No. K106. The authors acknowledged the support from Faezahana Mohkter for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin Fhong Soon.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soon, C.F., Sundra, S.A., Zainal, N. et al. Development of a Microdilution Device with One-step Dilution of Cytochalasin-B for Treating ORL-48 Cancer Microtissues. Biotechnol Bioproc E 24, 761–772 (2019). https://doi.org/10.1007/s12257-019-0018-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0018-5

Keywords

Navigation