Skip to main content
Log in

Ectopic Overexpression of Teff Grass (Eragrostis tef) Phi-class Glutathione S-transferase 1 (EtGSTF1) Enhances Prokaryotic Cell Survivability against Diverse Abiotic Stresses

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The glutathione S-transferases (GSTs) are encoded by a large gene family and well conserved in all living organisms; however they have evolved and are classified clearly according to each kingdom. GSTs are a dimeric protein that has been reported to maintain redox homeostasis in cells, and to protect organisms against oxidative damage. Recently, we isolated a GST coding gene from stress-treated teff grass (Eragrostis tef) and identified it as a plant-specific phi class GST (EtGSTF1) possessing conserved phi class-specific GST N- and C-terminal domains, GSH binding site, substrate binding pocket, and dimer interface. We found that overexpression of plant-specific phi class EtGSTF1 confers diverse abiotic stress tolerances including salt, osmotic, and heat stresses in E. coli which does not possess phi class GSTs. In addition, EtGSTF1 expression helps the E. coli cells tolerate arsenic (As)-induced cell toxicity. Collectively, although plantae and prokaryotae have differentiated a few billions of years ago, the plant-specific phi class EtGSTF1 could protect prokaryotic organisms by detoxification of molecules under diverse abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pompella, A., A. Visvikis, A. Paolicchi, V. D. Tata, and A. F. Casini (2003) The changing faces of glutathione, a cellular protagonist. Biochem. Pharmacol. 66: 1499–1503.

    Article  CAS  PubMed  Google Scholar 

  2. Couto, N., N. Malys, S. J. Gaskell, and J. Barber (2013) Partition and turnover of glutathione reductase from Saccharomyces cerevisiae: a proteomic approach. J. Proteome Res. 12: 2885–2894.

    Article  CAS  PubMed  Google Scholar 

  3. Pastore, A., F. Piemonte, M. Locatelli, A. Lo Russo, L. M. Gaeta, G. Tozzi, and G. Federici (2001) Determination of blood total, reduced, and oxidized glutathione in pediatric subjects. Clinical Chem. 47: 1467–1469.

    CAS  Google Scholar 

  4. Wilce, M. C. J., and M. W. Parker (1994) Structure and function of glutathione S-transferases. Biochim. Biophys. Acta. 1205: 1–18.

    Article  CAS  PubMed  Google Scholar 

  5. Miller, G., N. Suzuki, S. Ciftci-Yilmaz, and R. Mittler (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33: 453–467.

    Article  CAS  PubMed  Google Scholar 

  6. Gallé, Á., Z. Czékus, K. Bela, E. Horváth, A. Ördög, J. Csiszár, and P. Poór (2019) Plant glutathione transferases and light. Front. Plant Sci. 9:1944.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lai, A. G., C. J. Doherty, B. Mueller-Roeber, S. A. Kay, J. H. M. Schippers, and P. P. Dijkwel (2012) Circadian clock-associated 1 regulates ROS homeostasis and oxidative stress responses. Proc. Natl. Acad. Sci. USA. 109: 17129–17134.

    Article  PubMed  Google Scholar 

  8. Gechev, T. S., F. Van Breusegem, J. M. Stone, I. Denev, and C. Laloi (2006) Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioessays. 28: 1091–1101.

    Article  CAS  PubMed  Google Scholar 

  9. Dixon, D. P., A. Lapthorn, and R. Edwards (2002) Plant glutathione transferases. Genome Biol. 3: 3004.

    Article  Google Scholar 

  10. Mukanganyama, S., M. Bezabih, M. Robert, B. T. Ngadjui, G. F. W. Kapche, F. Ngandeu, and B. Abegaz (2011) The evaluation of novel natural products as inhibitors of human glutathione transferase P1-1. J. Enzyme Inhib. Med. Chem. 26: 460–467.

    Article  CAS  PubMed  Google Scholar 

  11. Allocati, N., L. Federici, M. Masulli, and C. Di Ilio (2009) Glutathione transferases in bacteria. FEBS. J. 276: 58–75.

    Article  CAS  PubMed  Google Scholar 

  12. Marrs, K. A. (1996) The functions and regulation of glutathione s-transferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 127–158.

    Article  CAS  PubMed  Google Scholar 

  13. Chronopoulou, E., N. Georgakis, I. Nianiou-Obeidat, P. Madesis, F. Perperopoulou, F. Pouliou, E. Vasilopoulou, E. Ioannou, F. S. Ataya, and N. E. Labrou (2017) Plant glutathione transferases in abiotic stress response and herbicide resistance. In: Hossain, M.A., Mostofa, M.G., Diaz-Vivancos, P., Burritt, D.J., Fujita, M., Tran, L.S.P. (Eds.), Glutathione in plant growth, development, and stress tolerance. Springer International Publishing, Cham. pp. 215–233.

    Chapter  Google Scholar 

  14. Nianiou-Obeidat, I., P. Madesis, C. Kissoudis, G. Voulgari, E. Chronopoulou, A. Tsaftaris, and N. E. Labrou (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep. 36: 791–805.

    Article  CAS  PubMed  Google Scholar 

  15. Dixon, D. P., I. Cummins, D. J. Cole, and R. Edwards (1998) Glutathione-mediated detoxification systems in plants. Curr. Opin. Plant Biol. 1: 258–266.

    Article  CAS  PubMed  Google Scholar 

  16. Hu, T. (2014) A glutathione s-transferase confers herbicide tolerance in rice. Crop Breed.Appl.Biot. 14: 76–81.

    Article  CAS  Google Scholar 

  17. Kim, Y.-O., H.-J. Bae, E. Cho, and H. Kang (2017) Exogenous glutathione enhances mercury tolerance by inhibiting mercury entry into plant cells. Front. Plant Sci. 8:683.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kumar, S., and P. K. Trivedi (2018) Glutathione S-transferases: role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 9:751.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liu, S.-H., G.-M. Zeng, Q.-Y. Niu, Y. Liu, L. Zhou, L.-H. Jiang, X.-f. Tan, P. Xu, C. Zhang, and M. Cheng (2017) Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: a mini review. Bioresource Technol. 224: 25–33.

    Article  CAS  Google Scholar 

  20. Shehu, D., N. Abdullahi, and Z. Alias (2019) Cytosolic glutathione S-transferase in bacteria: a review. Pol. J. Environ. Stud. 28: 515–528.

    Article  CAS  Google Scholar 

  21. Zablotowicz, R. M., R. E. Hoagland, M. A. Locke, and W. J. Hickey (1995) Glutathione-s-transferase activity and metabolism of glutathione conjugates by rhizosphere bacteria. Appl. Environ. Microbiol. 61: 1054–1060.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kunieda, T., T. Fujiwara, T. Amano, and Y. Shioi (2005) Molecular cloning and characterization of a senescence-induced tau-class glutathione s-transferase from barley leaves. Plant Cell Physiol. 46: 1540–1548.

    Article  CAS  PubMed  Google Scholar 

  23. Davidson, J. M., D. Min, RM. Aiken, and G.J.Kluitenberg (2018) Evaluating teff grass as a summer forage. Kansas Agricultural Experiment Station Research Reports, USA. pp. 1–5.

  24. Lee, K., M. A. Rahman, G. Choi, H. Ji, T. Hwang, and S. Lee (2018) Identification of differentially expressed abiotic stress-induced genes in teff grass (Eragrostis tef) leaves. JAPS 28: 1189–1193.

    Google Scholar 

  25. Lee, S.-H., K.-W. Lee, D.-G. Lee, D. Son, S. J. Park, K.-Y. Kim, H. S. Park, and J.-Y. Cha (2015) Identification and functional characterization of Siberian wild rye (Elymus sibiricus L.) small heat shock protein 16.9 gene (EsHsp16.9) conferring diverse stress tolerance in prokaryotic cells. Biotechnol. Lett. 37: 881–890.

    Article  CAS  PubMed  Google Scholar 

  26. Eaton, D. L., and T. K. Bammler (1999) Concise review of the glutathione S-transferases and their significance to toxicology. Toxicol. Sci. 49: 156–164.

    Article  CAS  PubMed  Google Scholar 

  27. Oakley, A. (2011) Glutathione transferases: a structural perspective. Drug Metab.Rev. 43: 138–151.

    Article  CAS  PubMed  Google Scholar 

  28. Sheehan, D., G. Meade, V. M. Foley, and C. A. Dowd (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem. J. 360: 1–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frova, C. (2006) Glutathione transferases in the genomics era: New insights and perspectives. Biomol. Eng. 23: 149–169.

    Article  CAS  PubMed  Google Scholar 

  30. Allocati, N., B. Favaloro, M. Masulli, M. F. Alexeyev, and C. Di Ilio (2003) Proteus mirabilis glutathione S-transferase B1-1 is involved in protective mechanisms against oxidative and chemical stresses. Biochem. J. 373: 305–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee, K.-W., M. A. Rahman, K.-Y. Kim, G. J. Choi, J.-Y. Cha, M. S. Cheong, A. M. Shohael, C. Jones, and S.-H. Lee (2018) Overexpression of the alfalfa DnaJ-like protein (MsDJLP) gene enhances tolerance to chilling and heat stresses in transgenic tobacco plants. Turk. J. Biol. 42: 12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hossain, M., M. R. Ismail, M. K. Uddin, M. Islam, and M. Ashrafuzzaman (2013) Efficacy of ascorbate-glutathione cycle for scavenging H2O2 in two contrasting rice genotypes during salinity stress. Aus. J.Crop Sci. 7: 1801–1808.

    CAS  Google Scholar 

  33. Pyngrope, S., K. Bhoomika, and R. S. Dubey (2013) Reactive oxygen species, ascorbate-glutathione pool, and enzymes of their metabolism in drought-sensitive and tolerant indica rice (Oryza sativa L.) seedlings subjected to progressing levels of water deficit. Protoplasma. 250: 585–600.

    Article  CAS  PubMed  Google Scholar 

  34. Ryu, H. Y., S. Y. Kim, H. M. Park, J. Y. You, B. H. Kim, J. S. Lee, and K. H. Nam (2009) Modulations of AtGSTF10 expression induce stress tolerance and BAK1-mediated cell death. Biochem. Biophys. Res. Commun. 379: 417–422.

    Article  CAS  PubMed  Google Scholar 

  35. Chen, J.-H., H.-W. Jiang, E.-J. Hsieh, H.-Y. Chen, C.-T. Chien, H.-L. Hsieh, and T.-P. Lin (2012) Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid. Plant Physiol. 158: 340–351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kumar, S., R. S. Dubey, R. D. Tripathi, D. Chakrabarty, and P. K. Trivedi (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ. Int. 74: 221–230.

    Article  CAS  PubMed  Google Scholar 

  37. Sharma, I. (2012) Arsenic induced oxidative stress in plants. Biologia. 67: 447–453.

    Article  CAS  Google Scholar 

  38. Rahman, M. A., S.-H. Lee, K.-Y. Kim, H. S. Park, T. Y. Hwang, G. J. Choi, and K.-W. Lee (2016) Arsenic-induced differentially expressed genes identified in Medicago sativa L. roots. J. Korean Soc. Grassl. Forage Sci. 36: 243–247.

    Article  Google Scholar 

Download references

Acknowledgments

This research work was supported by the “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ012187)”. This study was also supported by Postdoctoral Fellowship Program of National Institute of Animal Science funded by Rural Development Administration (RDA), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daeyoung Son or Sang-Hoon Lee.

Electronic supplementary material

12257_2018_495_MOESM1_ESM.pdf

Supplementary Fig. 1. Sequence of teff grass GSTF1 (EtGSTF1). Nucleotide and deduced amino acid sequence of EtGSTF1. Numbers at left indicate the nucleotide (up) and amino acid residue (down) position.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, KW., Hong, S., Rahman, M.A. et al. Ectopic Overexpression of Teff Grass (Eragrostis tef) Phi-class Glutathione S-transferase 1 (EtGSTF1) Enhances Prokaryotic Cell Survivability against Diverse Abiotic Stresses. Biotechnol Bioproc E 24, 552–559 (2019). https://doi.org/10.1007/s12257-018-0495-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0495-y

Keywords

Navigation