Skip to main content

Characterization of a Photosynthesis-based Bioelectrochemical Film Fabricated with a Carbon Nanotube Hydrogel

Abstract

Microbial photo-bioelectrochemical cells (MPCs) generate energy through the photosynthetic process of microorganisms. However, all MPCs developed to date require oxidation-reduction mediators to transport electrons from the photosynthetic cells to the electrodes, due to which the power conversion efficiencies of such MPCs are usually low. In this study, we developed a method to increase the power conversion efficiency of MPCs by immobilizing Chlorella cells with multiwall carbon nanotubes (MWCNTs) using a UV-cured polyethylene glycol diacrylate (PEG-DA) hydrogel film within a microfluidic chamber. We report that the photosynthetic current obtained in our setup is ∼3-fold higher than that in normal Chlorella cells. Chronoamperometric measurements of hydrogel films with different ratios of MWCNTs and Chlorella indicate that more current is produced at higher MWCNT concentrations. Scanning electron micrographs were used to visualize immobilized MWCNTs and Chlorella cells, and energy dispersive spectrometry was used to quantify the carbon content of the hydrogel film. Impedance measurements also indicated that the increased current was due to improved harvesting of photosynthetic energy. The findings of this study would provide novel insights to design systems that use natural renewable energy sources for the production of electricity.

This is a preview of subscription content, access via your institution.

References

  1. Wraight, C. A. and R. K. Clayton (1974) The absolute quantum efficiency of bacteriochlorophyll photooxidation in reaction centres of Rhodopseudomonas spheroides. Biochim. Biophys. Acta Bioenerg. 333: 246–260.

    Article  CAS  Google Scholar 

  2. Ha, J. G., Y. S. Song, S. Jung, S. Jang, Y. K. Kim, S. J. Bai, J.-H. Park, and S. K. Lee (2017) Novel microbial photobio-electrochemical cell using an invasive ultramicroelectrode array and a microfluidic chamber. Biotechnol. Lett. 39: 849–855.

    Article  CAS  PubMed  Google Scholar 

  3. Yehezkeli, O., R. Tel-Vered, J. Wasserman, A. Trifonov, D. Michaeli, R. Nechushtai, and I. Willner (2012) Integrated photosystem II-based photo-bioelectrochemical cells. Nat. Commun. 3: 742–749.

    Article  CAS  PubMed  Google Scholar 

  4. Tsujimura, S., A. Wadano, K. Kano, and T. Ikeda (2001) Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase. Enzyme Microb. Technol. 29: 225–231.

    Article  CAS  Google Scholar 

  5. Kim, J. H. and S. J. Bai (2014) Characterization of a photo-synthetic microbial solar cell with a membrane electrode assembly. J. Korean Phys. Soc. 65: 98–102.

    Article  CAS  Google Scholar 

  6. Kim, M. J., S. J. Bai, J. R. Yoon, and Y. S. Song (2019) Anomalous power enhancement of biophotovoltaic cell. J. Power Sources 412: 301–310.

    Article  CAS  Google Scholar 

  7. Yang, Y., G. Sun, and M. Xu (2011) Microbial fuel cells come of age. J. Chem. Technol. Biotechnol. 86: 625–632.

    Article  CAS  Google Scholar 

  8. Voloshin, R. A., V. D. Kreslavski, S. K. Zharmukhamedov, V. S. Bedbenov, S. Ramakrishna, and S. I. Allakhverdiev (2015) Photoelectrochemical cells based on photosynthetic systems: a review. Biofuel Res. J. 2: 227–235.

    Article  CAS  Google Scholar 

  9. Ivanov, I., T. Vidaković-Koch, and K. Sundmacher (2010) Recent advances in enzymatic fuel cells: experiments and modeling. Energies 3: 803–846.

    Article  CAS  Google Scholar 

  10. Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Logan, B. E. (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat. Rev. Microbiol. 7: 375–381.

    Article  CAS  PubMed  Google Scholar 

  12. Xie, X. H., E. L. Li, and Z. K. Tang (2011) Mediator toxicity and dual effect of glucose on the lifespan for current generation by Cyanobacterium Synechocystis PCC 6714 based photoelectro-chemical cells. J. Chem. Technol. Biotechnol. 86: 109–114.

    Article  CAS  Google Scholar 

  13. Barhoumi, L. and D. Dewez (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga Chlorella vulgaris. BioMed. Res. Intl. 2013: 647974.

    Article  CAS  Google Scholar 

  14. Kim, L. H., Y. J. Kim, H. Hong, D. Yang, M. Han, G. Yoo, H. W. Song, Y. Chae, J.-C. Pyun, A. R. Grossman, and W. Ryu (2016) Patterned nanowire electrode array for direct extraction of photosynthetic electrons from multiple living algal cells. Adv. Funct. Mater. 26: 7679–7689.

    Article  CAS  Google Scholar 

  15. Bai, S. J., T. Fabian, F. B. Prinz, and R. J. Fasching (2008) Nanoscale probe system for cell-organelle analysis. Sens. Actuators B Chem. 130: 249–257.

    Article  CAS  Google Scholar 

  16. Park, J. H., Y. S. Song, J. G. Ha, Y. K. Kim, S. K. Lee, and S. J. Bai (2013) Electrochemical sensing of high density photosynthetic cells using a microfluidic chip. Sens. Actuators. B Chem. 188: 1300–1305.

    Article  CAS  Google Scholar 

  17. You, S. G. and S. J. Bai (2017) Long-term viability of photosynthetic cells stacked in a hydrogel film within a polydimethylsiloxane microfluidic device. Biotechnol. Bioprocess Eng. 22: 474–480.

    Article  CAS  Google Scholar 

  18. Giraldo, J. P., M. P. Landry, S. M. Faltermeier, T. P. McNicholas, N. M. Iverson, A. A. Boghossian, N. F. Reuel, A. J. Hilmer, F. Sen, J. A. Brew, and M. S. Strano (2014) Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat. Mater. 13: 400–408.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, X. W., Y. X. Huang, X. F. Sun, G. P. Sheng, F. Zhao, S. G. Wang, and H. Q. Yu (2014) Conductive carbon nanotube hydrogel as a bioanode for enhanced microbial electrocatalysis. ACS Appl. Mater. Interfaces 6: 8158–8164.

    Article  CAS  PubMed  Google Scholar 

  20. Lee, H. J., S. J. Bai, and Y. S. Song (2017) Microfluidic electrochemical impedance spectroscopy of carbon composite nanofluids. Sci. Rep. 7: 722–732.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The present research was conducted by the research fund of Dankook University in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seoung Jai Bai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, S., Song, Y.S. & Bai, S.J. Characterization of a Photosynthesis-based Bioelectrochemical Film Fabricated with a Carbon Nanotube Hydrogel. Biotechnol Bioproc E 24, 337–342 (2019). https://doi.org/10.1007/s12257-018-0470-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0470-7

Keywords

  • electrochemistry measurement
  • hydrogel film
  • microbial photo-bioelectrochemical cells (MPCs)
  • micro-fluidic chamber
  • multiwall carbon nanotube (MWCNT)
  • photosynthesis