Skip to main content
Log in

Caffeic Acid Diminishes the Production and Release of Thrombogenic Molecules in Human Platelets

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Caffeic acid (CA) is a well-known to inhibit thrombogenic thromboxane A2 (TXA2) production, but there are no reports for the supply and usage of its precursor arachidonic acid (AA) and the release of serotonin, another thrombogenic molecule. In this study, we investigated the effect of CA on the phosphorylation of AA supply enzymes [cytosolic phospholipase A (cPLA), and phospholipase Cγ2 (PLCγ2)] and AA utilization enzymes [cyclooxygenase (COX)-1, TXA2 synthase (TXAS)] in collagen-activated human platelets. p38 MAPK phosphorylation associated with TXA2 production and c-Jun NH2-terminal kinase 1 (JNK1) phosphorylation associated with serotonin release were also determined. CA inhibited collagen-induced TXA2 production in a dose-dependent manner. It acted by counteracting the phosphorylation of AA release enzyme (PLCγ2) and AA utilization enzymes (COX-1 and TXAS) without affecting p38 MAPK and cPLA in collagenactivated human platelets. CA decreased collagen-released serotonin by inhibiting JNK1 phosphorylation. Therefore, our data demonstrate that CA might protect TXA2- and serotonin-mediated thrombogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwartz, S. M., R. L. Heimark, and M. W. Majesky (1990) Developmental mechanisms underlying pathology of arteries. Physiol. Rev. 70: 1177–1209.

    Article  CAS  PubMed  Google Scholar 

  2. Berridge, M. J. and R. F. Irvine (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312: 315–321.

    Article  CAS  PubMed  Google Scholar 

  3. Jennings, L. K. (2009) Role of Platelets in Atherothrombosis. Am. J. Cardiol. 103: 4A–10A.

    Article  CAS  Google Scholar 

  4. Mangin, P., C. Nonne, A. Eckly, P. Ohlmann, M. Freund, B. Nieswandt, J. P. Cazenave, and F. Lanza (2003) A PLC?2–independent platelet collagen aggregation requiring functional aßsociation of GPVI and integrin a2ß1. FEBS Lett. 542: 53–59.

    Article  CAS  PubMed  Google Scholar 

  5. Nishikawa, M., T. Tanaka, and H. Hidaka, (1980) Ca2+–calmodulin–dependent phosphorylation and platelet secretion. Nature 287: 863–865.

    Article  CAS  PubMed  Google Scholar 

  6. Kaibuchi, K., K. Sano, M. Hoshijima, Y. Takai, and Y. Nishizuka (1982) Phosphatidylinositol turnover in platelet activation; calcium mobilization and protein phosphorylation. Cell Calcium. 3: 323–335.

    Article  CAS  PubMed  Google Scholar 

  7. Kramer, R. M., E. F. Roberts, S. L. Um. A. G. Börsch–Haubold, S. P. Watson, M. J. Fisher, and J. A. Jakubowski (1996) p38 mitogen–activated protein kinase phosphorylates cytosolic phospholipase A2 (cPLA2) in thrombin–stimulated platelets. J. Biol. Chem. 271: 27723–27729.

    Article  CAS  PubMed  Google Scholar 

  8. Lee, J. S., K. R. Lee, S. Lee, H. J. Lee, H. S. Yang, J. H. Yeo, J. M. Park, B. H. Choi, and E. K. Hong (2017) Polysaccharides isolated from liquid culture broth of Inonotus obliquus inhibit the invasion of human non–small cell lung carcinoma cells. Biotechnol. Bioproc. Eng. 22: 45–51.

    Article  CAS  Google Scholar 

  9. Lee, K. S., D. H. Lee, Y. S. Kwon, S. Y. Chun, and K. S. Nam (2014) Deep–sea water inhibits metastatic potential in HT–29 human colorectal adenocarcinomas via MAPK/NF–?B signaling pathway. Biotechnol. Bioproc. Eng. 19: 733–739.

    Article  CAS  Google Scholar 

  10. FitzGerald, G. A. (1991) Mechanisms of platelet activation: thromboxane A2 as an amplifying signal for other agonists. Am. J. Cardiol. 68: 11B–15B.

    Article  Google Scholar 

  11. Ruggeri, Z. M. (2002) Platelets in atherothrombosis. Nat. Med. 8: 1227–1234.

    Article  CAS  PubMed  Google Scholar 

  12. Armstrong, P. C., N. S. Kirkby, Z. N. Zain, M. Emerson, J. A. Mitchell, and T. D. Warner (2011) Thrombosis is reduced by inhibition of COX–1, but unaffected by inhibition of COX–2, in an acute model of platelet activation in the mouse. PLoS One 6: e20062.

    Article  CAS  Google Scholar 

  13. Ichikawa, K., S. Tazawa, S. Hamano, M. Kojima, and S. Hiraku (1999) Effect of ozagrel on locomotor and motor coordination after transient cerebral ischemia in experimental animal models. Pharmacology 59: 257–265.

    Article  CAS  PubMed  Google Scholar 

  14. Malhotra, S., Y. P. Sharma, A. Grover, S. Majumdar, S. M. Hanif, V. K. Bhargava, A. Bhatnagar, and P. Pandhi (2003) Effect of different aspirin doses on platelet aggregation in patients with stable coronary artery disease. Intern. Med. J. 33: 350–354.

    Article  CAS  PubMed  Google Scholar 

  15. Pulcinelli, F. M., P. Pignatelli, A. Celestini, S. Riondino, P. P. Gazzaniga, and F. Violi (2004) Inhibition of platelet aggregation by aspirin progressively decreases in long–term treated patients. J. Am. Coll. Cardiol. 43: 979–984.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, D. H., H. H. Kim, H. J. Cho, J. S. Bae, Y. B. Yu, and H. J. Park (2014) Antiplatelet effects of caffeic acid due to Ca2+ mobilization–inhibition via cAMP–dependent inositol–1, 4, 5–trisphosphate receptor phosphorylation. J. Atheroscler. Thromb. 21: 23–37.

    Article  CAS  PubMed  Google Scholar 

  17. Lu, Y., Q. Li, Y. Y. Liu, K. Sun, J. Y. Fan, C. S. Wang, and J. Y. Han (2015) Inhibitory effect of caffeic acid on ADP–induced thrombus formation and platelet activation involves mitogenactivated protein kinases. Sci. Rep. 5: 13824.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kauskot, A., F. Adam, A. Mazharian, N. Ajzenberg, E. Berrou, A. Bonnefoy, J. P. Rosa, M. F. Hoylaerts, and M. Bryckaert (2007) Involvement of the mitogen–activated protein kinase c–Jun NH2–terminal kinase 1 in thrombus formation. J. Biol. Chem 282: 31990–31999.

    Article  CAS  PubMed  Google Scholar 

  19. Adam, F., A. Kauskot, J. P. Rosa, and M. Bryckaert (2008) Mitogen–activated protein kinases in hemostasis and thrombosis. J. Thromb. Haemost. 6: 2007–2016.

    Article  CAS  PubMed  Google Scholar 

  20. Adam, F., A. Kauskot, P. Nurden, E. Sulpice, M. F. Hoylaerts, R. J. Davis, J. P. Rosa, and M. Bryckaert (2010) Platelet JNK1 is involved in secretion and thrombus formation. Blood 115: 4083–4092.

    Article  CAS  PubMed  Google Scholar 

  21. Jackson, E. C. G., G. Ortar, and A. McNicol (2013) The effects of an inhibitor of diglyceride lipase on collagen–induced platelet activation. J. Pharmacol. Exp. Ther. 347: 582–588.

    Article  CAS  PubMed  Google Scholar 

  22. Shin, J. H., H. W. Kwon, M. H. Rhee, and H. J. Park (2018) Inhibitory effects of thromboxane A2 generation by ginsenoside Ro due to attenuation of cytosolic phospholipase A2 phosphorylation and arachidonic acid release. J. Ginseng Res. https://doi.org/10.1016/j.jgr.2017.12.007

    Google Scholar 

  23. Chen, T. G., J. J. Lee, K. H. Lin, C. H. Shen, D. S. Chou, and J. R. Sheu (2007) Antiplatelet activity of caffeic acid phenethyl ester is mediated through a cyclic GMP–dependent pathway in human platelets. Chin. J. Physiol. 50: 121–126.

    CAS  PubMed  Google Scholar 

  24. Park, J. B. (2009) 5–Caffeoylquinic acid and caffeic acid orally administered suppress P–selectin expression on mouse platelets. J. Nutr. Biochem. 20: 800–805.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwa-Jin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, G.S., Nam, KS. & Park, HJ. Caffeic Acid Diminishes the Production and Release of Thrombogenic Molecules in Human Platelets. Biotechnol Bioproc E 23, 641–648 (2018). https://doi.org/10.1007/s12257-018-0424-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0424-0

Keywords

Navigation