Skip to main content
Log in

Detergent-assisted Enhancement of the Translation Rate during Cell-free Synthesis of Peptides in an Escherichia coli Extract

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The open nature of cell-free synthesis allows customization of the reaction conditions for given target molecules using diverse biological and non-biological substances. This study demonstrates that non-ionic detergents can be used to enhance translation during the synthesis of peptides in a cell-free system derived from an Escherichia coli extract. The yield of the antimicrobial peptide Cecropin P1 was markedly increased in the presence of detergents. The stimulatory effect of detergents was not limited to the Cecropin P1 peptide, but the detergent also enhanced the translation of other antimicrobial peptides. Furthermore, the enhanced translation rate by detergents was maintained for extended periods by a continuous exchange cell-free synthesis reaction, leading to production of antimicrobial peptides with markedly improved yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albericio, F. (2004) Developments in peptide and amide synthesis. Curr. Opin. Chem. Biol. 8: 211–221.

    Article  CAS  PubMed  Google Scholar 

  2. Park, J. C., D. H. Kim, C. S. Kim, and J. H. Seo (2018) R5 peptide–based biosilicification using methyltrimethoxysilane. Biotechnol. Bioprocess Eng. 23: 11–15.

    Article  CAS  Google Scholar 

  3. Munk, J. K., C. Ritz, F. P. Fliedner, N. Frimodt–Møller, and P. R. Hansen (2014) Novel method to identify the optimal antimicrobial peptide in a combination matrix, using anoplin as an example. Antimicrob. Agents Chemother. 58: 1063–1070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feng, X., W. Xu, P. Qu, X. Li, L. Xing, D. Liu, J. Jiao, J. Wang, Z. Li, and C. Liu (2015) High–yield recombinant expression of the chicken antimicrobial peptide fowlicidin–2 in Escherichia coli. Biotechnol. Prog. 31: 369–374.

    Article  CAS  PubMed  Google Scholar 

  5. Bray, B. L. (2003) Large–scale manufacture of peptide therapeutics by chemical synthesis. Nat. Rev. Drug Discov. 2: 587–593.

    Article  CAS  PubMed  Google Scholar 

  6. Martemyanov, K. A., V. A. Shirokov, O. V. Kurnasov, A. T. Gudkov, and A. S. Spirin (2001) Cell–free production of biologically active polypeptides: application to the synthesis of antibacterial peptide Cecropin. Protein Expr. Purif. 21: 456–461.

    Article  CAS  PubMed  Google Scholar 

  7. Cui, H., M. J. Webber, and S. I. Stupp (2010) Self–assembly of peptide amphiphiles: from molecules to nanostructures to biomaterials. Biopolymers 94: 1–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Loose, C. R., R. S. Langer, and G. N. Stephanopoulos (2007) Optimization of protein fusion partner length for maximizing in vitro translation of peptides. Biotechnol. Prog. 23: 444–451.

    Article  CAS  PubMed  Google Scholar 

  9. Lee, K. H., Y. C. Kwon, S. J. Yoo, and D. M. Kim (2010) Ribosomal synthesis and in situ isolation of peptide molecules in a cell–free translation system. Protein Exp. Purif. 71: 16–20.

    Article  CAS  Google Scholar 

  10. Yin, G. and J. R. Swartz (2004) Enhancing multiple disulfide bonded protein folding in a cell–free system. Biotechnol. Bioeng. 86: 188–195.

    Article  CAS  PubMed  Google Scholar 

  11. Lee, K. Y., K. H. Lee, J. W. Park, and D. M. Kim (2012) Flexible programming of cell–free protein synthesis using magnetic beadimmobilized plasmids. PLoS One 7: e34429.

    Article  CAS  Google Scholar 

  12. Klammt, C., D. Schwarz, K. Fendler, W. Haase, V. Dotsch, and F. Bernhard (2005) Evaluation of detergents for the soluble expression of alpha–helical and beta–barrel–type integral membrane proteins by a preparative scale individual cell–free expression system. FEBS J. 272: 6024–6038.

    Article  CAS  PubMed  Google Scholar 

  13. Kim, T. W., J. W. Keum, I. S. Oh, C. Y. Choi, C. G. Park, and D. M. Kim (2006) Simple procedures for the construction of a robust and cost–effective cell–free protein synthesis system. J. Biotechnol. 126: 554–561.

    Article  CAS  PubMed  Google Scholar 

  14. Sipos, D., M. Andersson, and A. Ehrenberg (1992) The structure of the mammalian antibacterial peptide cecropin–P1 in solution, determined by proton–NMR. Eur. J. Biochem. 209: 163–169.

    Article  CAS  PubMed  Google Scholar 

  15. Richardson, S. M., S. J. Wheelan, R. M. Yarrington, and J. D. Boeke (2006) GeneDesign: rapid, automated design of multikilobase synthetic genes. Genome Res. 16: 550–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ahn, J. H., K. H. Lee, J. W. Shim, E. Y. Lee, and D. M. Kim (2013) Streamlined cell–free protein synthesis from sequence information. Biotechnol. Bioproc. Eng. 18: 1101–1108.

    Article  CAS  Google Scholar 

  17. Moerman, L., S. Bosteels, W. Noppe, J. Willems, E. Clynen, L. Schoofs, K. Thevissen, J. Tytgat, J. V. Eldere, J. V. D. Walt, and F. Verdonck (2002) Antibacterial and antifungal properties of alpha–helical, cationic peptides in the venom of scorpions from southern Africa. Eur. J. Biochem. 19: 4799–4810.

    Article  CAS  Google Scholar 

  18. Reed, W. A., K. L. White, F. M. Enright, J. Holck, G. W. Jeffers, and J. M. Jaynes (1992) Enhanced in vitro growth of murine fibroblast cells and preimplantation embryos cultured in medium supplemented with an amphipathic peptide. Mol. Reprod. Dev. 31: 106–113.

    Article  CAS  PubMed  Google Scholar 

  19. Son, J. M., J. H. Ahn, M. Y. Hwang, C. G. Park, C. Y. Choi, and D. M. Kim (2006) Enhancing the efficiency of cell–free protein synthesis through the polymerase–chain–reaction–based addition of a translation enhancer sequence and the in situ removal of the extra amino acid residues. Anal. Biochem. 351: 187–192.

    Article  CAS  PubMed  Google Scholar 

  20. Schagger, H. (2006) Tricine–SDS–PAGE. Nat. Protoc. 1: 16–22.

    Article  CAS  PubMed  Google Scholar 

  21. Kim, D. M. and C. Y. Choi (1996) A semicontinuous prokaryotic coupled transcription/ translation system using a dialysis membrane. Biotechnol. Prog. 12: 645–649.

    Article  CAS  PubMed  Google Scholar 

  22. Hahn, G. H. and D. M. Kim (2006) Production of milligram quantities of recombinant proteins from PCR–amplified DNAs in a continuous–exchange cell–free protein synthesis system. Anal. Biochem. 355: 151–153.

    Article  CAS  PubMed  Google Scholar 

  23. Ahn, J. H., H. S. Chu, T. W. Kim, I. S. Oh, C. Y. Choi, G. H. Hahn, C. G. Park, and D. M. Kim (2005) Cell–free synthesis of recombinant proteins from PCR–amplified genesat a comparable productivity to that of plasmid–based reactions. Biochem. Biophys. Res. Commun. 338: 1346–1352.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Myung Kim.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Go, SY., Lee, KH. & Kim, DM. Detergent-assisted Enhancement of the Translation Rate during Cell-free Synthesis of Peptides in an Escherichia coli Extract. Biotechnol Bioproc E 23, 679–685 (2018). https://doi.org/10.1007/s12257-018-0418-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0418-y

Keywords

Navigation