Fluorescence-based Quantification of Bioactive Keratin Peptides from Feathers for Optimizing Large-scale Anaerobic Fermentation and Purification

Abstract

The extremely thermophilic eubacterium Fervidobacterium islandicum AW-1 produces low molecular weight (LMW; < 1 kDa) keratin peptides (KPs) from poultry feathers at 70°C. However, detection and quantification of feather hydrolysate-derived peptides is needed for optimizing fermentation and down-stream processes. Herein, we developed a large-scale fermentation and purification of skin anti-aging LMW KPs from recalcitrant feathers using fluorescence-based quantification of N-terminal prolinecontaining KPs derivatized with 3,4-dihydroxybenzoic acid to yield fluorescent adducts. Fluorescent products were correlated with bioactive KP concentrations in keratin fractions and cosmetic formulations. Subsequent anaerobic fermentative keratinolysis and large-scale purification achieved 4.4 g/L LMW KPs from 8 g/L native feathers in a 5 L batch bioreactor, generating 0.8 g/L purified MMP-1 suppressive KPs (yield = 1.2%). This demonstrated the feasibility of industrial-scale anaerobic feather digestion and purification of LMW KPs to produce skin anti-aging peptides from keratin hydrolysates in a more environmentally sustainable manner.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Zhang, L. and T. J. Falla (2009) Cosmeceuticals and peptides. Clin. Dermatol. 27: 485–494.

    Article  PubMed  Google Scholar 

  2. 2.

    Ochiai, A., S. Tanaka, T. Tanaka, and M. Taniguchi (2016) Rice bran protein as a potent source of antimelanogenic peptides with tyrosinase inhibitory activity. J. Nat. Prod. 79: 2545–2551.

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Kume, A., M. Okochi, K. Shimizu, Y. Yoshida, and H. J. B. Honda (2016) Development of a tactical screening method to investigate the characteristics of functional peptides. Biotechnol. Bioprocess Eng. 21: 119–127.

    Article  CAS  Google Scholar 

  4. 4.

    Shao, W., W. Zhu, Y. Wang, J. Lu, G. Jin, Y. Wang, and W. J. B. Su (2016) Rational design and molecular engineering of peptide aptamers to target human pancreatic trypsin in acute pancreatitis. Biotechnol. Bioprocess Eng. 21: 144–152.

    Article  CAS  Google Scholar 

  5. 5.

    Lee, G., Y. Ko, M. Park, B. Kim, H. Hyun, and W. Lim (2017) Recombinant DNA cloning of the active region of the receptor activator of NF-κB ligand (RANKL) gene and its role in osteoclastogenesis. Biotechnol. Bioprocess Eng 22: 686–692.

    Article  CAS  Google Scholar 

  6. 6.

    Do, B. H., S. Park, G. G. Kwon, M. T. Nguyen, H. J. Kang, J.-A. Song, J. Yoo, A. N. Nguyen, J. Jang, M. Jang, S. Lee, S. So, S. Sim, J. Jin, K. J. Lee, M. J. Osborn, and H. Choe (2017) Soluble expression and purification of bioactive interleukin 33 in E. coli. Biotechnol. Bioprocess Eng. 22: 256–264.

    Article  CAS  Google Scholar 

  7. 7.

    Henninot, A., J. C. Collins, and J. M. Nuss (2018) The current state of peptide drug discovery: back to the future? J. Med. Chem. 61: 1382–1414.

    Article  CAS  Google Scholar 

  8. 8.

    Chen, T., H. Hou, Y. Fan, S. Wang, Q. Chen, L. Si, and B. Li (2016) Protective effect of gelatin peptides from pacific cod skin against photoaging by inhibiting the expression of MMPs via MAPK signaling pathway. J. Photochem. Photobiol. B 165: 34–41.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Kang, Y. A., J. I. Na, H. R. Choi, J. W. Choi, H. Y. Kang, and K. C. Park (2011) Novel anti-inflammatory peptides as cosmeceutical peptides. Peptides 32: 2134–2136.

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Schurink, M., W. J. van Berkel, H. J. Wichers, and C. G. Boeriu (2007) Novel peptides with tyrosinase inhibitory activity. Peptides 28: 485–495.

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Gosslau, A., S. Li, C. T. Ho, K. Y. Chen, and N. E. Rawson (2011) The importance of natural product characterization in studies of their anti-inflammatory activity. Mol. Nutr. Food Res. 55: 74–82.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Jin, H. S., S. Y. Park, K. Kim, Y. J. Lee, G. W. Nam, N. J. Kang, and D. W. Lee (2017) Development of a keratinase activity assay using recombinant chicken feather keratin substrates. PLoS One 12: e0172712.

    Google Scholar 

  13. 13.

    Pittayapruek, P., J. Meephansan, O. Prapapan, M. Komine, and M. Ohtsuki (2016) Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17.

    Google Scholar 

  14. 14.

    Kahari, V. M. and U. Saarialho-Kere (1997) Matrix metalloproteinases in skin. Exp. Dermatol. 6: 199–213.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Varani, J., R. L. Warner, M. Gharaee-Kermani, S. H. Phan, S. Kang, J. H. Chung, Z. Q. Wang, S. C. Datta, G. J. Fisher, and J. J. Voorhees (2000) Vitamin A antagonizes decreased cell growth and elevated collagen-degrading matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J. Invest. Dermatol. 114: 480–486.

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Ralf Paus, L., M. Berneburg, M. Trelles, B. Friguet, S. Ogden, M. Esrefoglu, G. Kaya, D. J. Goldberg, S. Mordon, R. G. Calderhead, C. E. M. Griffiths, J. H. Saurat, and D. M. Thappa (2008) How best to halt and/or revert UV-induced skin ageing: strategies, facts and fiction. Exp. Dermatol. 17: 228–229.

    Article  Google Scholar 

  17. 17.

    Nam, G. W., D. W. Lee, H. S. Lee, N. J. Lee, B. C. Kim, E. A. Choe, J. K. Hwang, M. T. Suhartono, and Y. R. Pyun (2002) Native-feather degradation by Fervidobacterium islandicum AW-1, a newly isolated keratinase-producing thermophilic anaerobe. Arch. Microbiol. 178: 538–547.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Lee, Y. J., H. Jeong, G. S. Park, Y. Kwak, S. J. Lee, S. J. Lee, M. K. Park, J. Y. Kim, H. K. Kang, J. H. Shin, and D. W. Lee (2015) Genome sequence of a native-feather degrading extremely thermophilic Eubacterium, Fervidobacterium islandicum AW-1. Stand. Genomic. Sci. 10: 71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Yeo, I., Y. J. Lee, K. Song, H. S. Jin, J. E. Lee, D. Kim, D. W. Lee, and N. J. Kang (2018) Low-molecular weight keratins with anti-skin aging activity produced by anaerobic digestion of poultry feathers with Fervidobacterium islandicum AW-1. J. Biotechnol. 271: 17–25.

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Friedrich, A. B. and G. Antranikian (1996) Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermotogales. Appl. Environ. Microbiol. 62: 2875–2882.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Wolin, E. A., R. S. Wolfe, and M. J. Wolin (1964) Viologen dye inhibition of methane formation by Methanobacillus omelianskii. J. Bacteriol. 87: 993–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe (1979) Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260–296.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Rosen, H. (1957) A modified ninhydrin colorimetric analysis for amino acids. Arch. Biochem. Biophys. 67: 10–15.

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Ellman, G. L., K. D. Courtney, V. Andres, Jr. and R. M. Feather-Stone (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Andrews, G. L., B. L. Simons, J. B. Young, A. M. Hawkridge, and D. C. Muddiman (2011) Performance characteristics of a new hybrid quadrupole time-of-flight tandem mass spectrometer (TripleTOF 5600). Anal. Chem. 83: 5442–5446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Alagappan, G. and R. M. Cowan (2001) Biokinetic models for representing the complete inhibition of microbial activity at high substrate concentrations. Biotechnol. Bioeng. 75: 393–405.

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Andrews, J. F. (1968) A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng. 10: 707–723.

    Article  CAS  Google Scholar 

  28. 28.

    Jin, H. S., K. Song, J. H. Baek, J. E. Lee, D. J. Kim, G. W. Nam, N. J. Kang, and D. W. Lee (2018) Identification of matrix metalloproteinase-1-suppressive peptides in feather keratin hydrolysate. J. Agric. Food Chem. 66: 12719–12729.

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Yasmin, H., M. S. Rahman, T. Shibata, T. Kabashima, and M.vKai (2014). A novel fluorometric method for the selective determination of Pro-Gly and Pro-Gly-Pro. Int. J. Pept. Res. Ther. 20: 441–446.

    CAS  Google Scholar 

  30. 30.

    Gregg, K. and G. E. Rogers (1986) Feather keratin: Composition, structure and biogenesis, in Biology of the Integument: 2 Vertebrates (Bereiter-Hahn, J., Matoltsy, A.G. and Richards, K.S., eds), pp666–694, Springer Berlin Heidelberg, Berlin, Heidelberg.

    Google Scholar 

  31. 31.

    Flick, E. W. (1995) Section VII-Lotions, in Cosmetic and Toiletry Formulations (Flick, E.W., ed), pp253–304, William Andrew Publishing, Oxford.

    Google Scholar 

  32. 32.

    Flick, E. W. (1995) Section V-Creams, in Cosmetic and Toiletry Formulations (Flick, E.W., ed), pp109–187, William Andrew Publishing, Oxford.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dong-Woo Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, H., Park, S.Y., Kim, J. et al. Fluorescence-based Quantification of Bioactive Keratin Peptides from Feathers for Optimizing Large-scale Anaerobic Fermentation and Purification. Biotechnol Bioproc E 24, 240–249 (2019). https://doi.org/10.1007/s12257-018-0400-8

Download citation

Keywords

  • Fervidobacterium islandicum
  • LMW keratin peptide
  • anaerobic digestion
  • large-scale purification
  • skin anti-aging