Isolation of Novel Exo-type β-Agarase from Gilvimarinus chinensis and High-level Secretory Production in Corynebacterium glutamicum


Agar, a major cell wall component in marine red macroalgae, has recently gained high interest as a potential renewable biomass. By the activity of β-agarase which cleaves the β-1,4-glycosidic bond, agarose can be hydrolyzed into neoagarobioses which have great potential in the cosmetics, food, and medical industries. Here, based on sequence homology analysis, we isolated a novel exotype β-agarase (EXB3) from Gilvimarinus chinensis which have putative glycoside hydrolase (GH) 50 domain. The optimum pH and temperature for the activity of EXB3 were pH 7.0 and 30°C, respectively. The Km and Vmax for agarose were 26 mg/mL and 126.8 U/mg, respectively, and the Kcat/Km value was 3.7 × 105 s-1M-1. Under the optimal condition (30°C and pH 7), it was clearly confirmed that neoagarobiose (NA2) was produced as a major product directly from agarose. For the large-scale production of EXB3, we also developed a secretory production platform in Corynebacterium glutamicum. During the fed-batch cultivation in 2 L-scale bioreactor, EXB3 was successfully produced in the culture medium as high as 458.3 mg/L, and EXB3 was purified from the culture supernatant with high purity and recovery yield (24%).

This is a preview of subscription content, access via your institution.


  1. 1.

    Oh, Y. R., K. A. Jung, H. J. Lee, G. Y. Jung, and J. M. Park (2018). A novel 3, 6-anhydro-l-galactose dehydrogenase produced by a newly isolated raoultella ornithinolytica b6-jmp12. Biotechnol. Bioproc. E.. 23: 64–71.

    Article  CAS  Google Scholar 

  2. 2.

    Hong, S. J., J. H. Lee, E. J. Kim, H. J. Yang, Y. K. Chang, J. S. Park, and S. K. Hong (2017). In vitro and in vivo investigation for biological activities of neoagarooligosaccharides prepared by hydrolyzing agar with β-agarase. Biotechnol. Bioproc. E.. 22: 489–496.

    CAS  Google Scholar 

  3. 3.

    Wang, W., P. Liu, C. Hao, L. Wu, W. Wan, and X. Mao (2017). Neoagaro-oligosaccharide monomers inhibit inflammation in LPS-stimulated macrophages through suppression of MAPK and NF-κB pathways. Sci. Rep.. 7: 44252.

    Google Scholar 

  4. 4.

    Pereira, L. (2018). Biological and therapeutic properties of the seaweed polysaccharides. Int. Biol. Rev. 2.

    Google Scholar 

  5. 5.

    Fu, X. T. and S. M. Kim (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs.. 8: 200–218.

    CAS  Google Scholar 

  6. 6.

    Pluvinage, B., J. H. Hehemann, and A. B. Boraston (2013). Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. J. Biol. Chem.. 288: 28078–28088.

    CAS  Google Scholar 

  7. 7.

    Temuujin, U., W. J. Chi, S. Y. Lee, Y. K. Chang, and S. K. Hong (2011). Overexpression and biochemical characterization of DagA from Streptomyces coelicolor A3 (2): an endo-type β-agarase producing neoagarotetraose and neoagarohexaose. Appl. Microbiol. Biotechnol.. 92: 749–759.

    CAS  Google Scholar 

  8. 8.

    Giles, K., B. Pluvinage, and A. B. Boraston (2017). Structure of a glycoside hydrolase family 50 enzyme from a subfamily that is enriched in human gut microbiome bacteroidetes. Proteins. 85: 182–187.

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Temuujin, U., W. J. Chi, Y. K. Chang, and S. K. Hong (2012). Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3 (2), an exo-and endo-type β-agaraseproducing neoagarobiose. J. Bacteriol.. 194: 142–149.

    Article  CAS  Google Scholar 

  10. 10.

    Baumgart, M., S. Unthan, R. Kloss, A. Radek, T. Polen, N. Tenhaef, M.F. Müller, A. Küberl, D. Siebert, N. Brühl, K. Marin, S. Hans, R. Krämer, M. Bott, J. Kalinowski, W. Wiechert, G. Seibold, J. Frunzke, C. Rückert, V.F. Wendisch, S. Noack (2017). Corynebacterium glutamicum Chassis C1*: building and testing a novel platform host for synthetic biology and industrial biotechnology. ACS Synth. Biol.. 7: 132–144.

    Google Scholar 

  11. 11.

    Baritugo, K. A., H. T. Kim, Y. David, J. I. Choi, S. H. Hong, K. J. Jeong, J. H. Choi, J. C. Joo, and S. J. Park (2018) Metabolic engineering o. Corynebacterium glutamicum for fermentative production of chemicals in biorefineryAppl. MicrobiolBiotechnol.

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    An, S. J., S. S. Yim, and K. J. Jeong (2013). Development of a secretion system for the production of heterologous proteins in Corynebacterium glutamicum using the Porin B signal peptide. Protein Expr. Purif.. 89: 251–257.

    Article  CAS  Google Scholar 

  13. 13.

    Yim, S. S., S. J. An, J. W. Choi, A. J. Ryu, and K. J. Jeong (2014). High-level secretory production of recombinant single-chain variable fragment (scFv) in Corynebacterium glutamicum. Appl. Microbiol. Biotechnol.. 98: 273–284.

    CAS  Google Scholar 

  14. 14.

    Hermann T., W. Pfefferle, C. Baumann, E. Busker, S. Schaffer, M. Bott, H. Sahm, N. Dusch, J. Kalinowski, A. Pühler, A. K. Bendt, R. Krämer, A. Burkovski (2001). Proteome analysis of Corynebacterium glutamicum. Electrophoresis. 22: 1712–1723.

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Lee, J. Y., Y. A. Na, E. Kim, H. S. Lee, and P. Kim (2016) Th. Actinobacterium Corynebacterium glutamicum, an industrial workhorse

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Freudl, R. (2017) Beyond amino acids. Use of the Corynebacterium glutamicum cell factory for the secretion of heterologous proteinsJ. Biotechnol.

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Liu, X., W. Zhang, Z. Zhao, X. Dai, Y. Yang, and Z. Bai (2017) Protein secretion i. Corynebacterium glutamicumCrit. Rev. Biotechnol.

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Kikuchi, Y., H. Itaya, M. Date, K. Matsui, and L.-F. Wu (2009) TatABC overexpression improve. Corynebacterium glutamicum Tat-dependent protein secretion. Appl. Environ. Microbiol.. 75: 603–607

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Yim, S. S., J. W. Choi, R. J. Lee, Y. J. Lee, S. H. Lee, S. Y. Kim, and K. J. Jeong (2016). Development of a new platform for secretory production of recombinant proteins in Corynebacterium glutamicum. Biotechnol. Bioeng.. 113: 163–172.

    Article  CAS  Google Scholar 

  20. 20.

    Kumar, S., K. Tamura, and M. Nei (1994). MEGA: molecular evolutionary genetics analysis software for microcomputers. Bioinformatics 10: 189–191.

    CAS  Google Scholar 

  21. 21.

    Nielsen, H. (2017). Predicting secretory proteins with SignalP. Methods Mol. Biol. 1611: 59–73.

  22. 22.

    Kim, H. T., S. Lee, D. Lee, H. S. Kim, W. G. Bang, K. H. Kim, and I. G. Choi (2010). Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2–40: an exo-type β-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol.. 86: 227–234.

    CAS  Google Scholar 

  23. 23.

    Ye, R., J. H. Kim, B. G. Kim, S. Szarka, E. Sihota, and S. L. Wong (1999). High-level secretory production of intact, biologically active staphylokinase from Bacillus subtilis. Biotechnol. Bioeng.. 62: 87–96.

    Article  CAS  Google Scholar 

  24. 24.

    Park, J., S. K. Hong, and Y. K. Chang (2014). Production of DagA, a β-agarase, by Streptomyces lividans in glucose medium or mixed-sugar medium simulating microalgae hydrolysate. J. Microbiol. Biotechnol.. 24: 1622–1628.

    CAS  Google Scholar 

  25. 25.

    Fu, X. T., H. Lin, and S. M. Kim (2008). Purification and characterization of a novel β-agarase, AgaA34, from Agarivorans albus YKW-34. Appl. Microbiol. Biotechnol.. 78: 265–273.

    CAS  Google Scholar 

  26. 26.

    Zhang, W. W. and L. Sun. (2007) Cloning, characterization, and molecular application of a beta-agarase gene from Vibrio sp. strain V134. Appl. Environ. Microbiol. 73: 2825–2831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Kim, J. D., D. G. Lee, and S. H. Lee (2018) Cloning, Expression, and Characterization of a Thermotolerant β-agarase from Simiduia sp. SH-4. Biotechnol. Bioproc. E. 23: 525–531.

    Article  CAS  Google Scholar 

  28. 28.

    Li, G., M. Sun, J. Wu, M, Ye, X. Ge, W. Wei, H. Li, and F. Hu. (2015). Identification and biochemical characterization of a novel endo-type β-agarase AgaW from Cohnella sp. strain LGH. Appl. Microbiol. Biotechnol. 99: 10019–10029.

    Google Scholar 

  29. 29.

    Allouch J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. (2003) The three-dimensional structures of two beta-agarases. J. Biol. Chem. 278: 47171–47180.

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Cui, X., Y. Jiang, L. Chang, L. Meng, J. Yu, C. Wang, and X. Jiang. (2018) Heterologous expression of an agarase gene in Bacillus subtilis, and characterization of the agarase. Int. J. Biol. Macromol. 120(Pt A): 657–664.

    Google Scholar 

  31. 31.

    Yim, S. S., J. W. Choi, S. H. Lee, K. J. Jeong (2016) Modular Optimization of a hemicellulose-utilizing pathway in Corynebacterium glutamicum for consolidated bioprocessing of hemicellulosic biomass. ACS Synt. Biol. 5: 334–343.

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ki Jun Jeong.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y.J., Choi, J.W., Cho, M.S. et al. Isolation of Novel Exo-type β-Agarase from Gilvimarinus chinensis and High-level Secretory Production in Corynebacterium glutamicum. Biotechnol Bioproc E 24, 250–257 (2019).

Download citation


  • β-agarase
  • Gilvimarinus chinensis
  • Corynebacterium glutamicum
  • secretion
  • fed-batch cultivation