Skip to main content
Log in

Development of Cellulose Hydrogel Microspheres for Lipase Immobilization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Cellulose hydrogel microspheres were prepared by sol-gel transition using an ionic liquid-in-oil emulsion. Factors that influenced the formation of these microspheres, including the ratio of ionic liquid to oil, surfactant concentration, and stirring speed, were optimized for lipase immobilization. Using the optimized method, Candida rugosa lipase was efficiently immobilized on the microspheres by physical adsorption. As compared with the free lipase, the specific activity of the immobilized lipase was 1.4 times higher, its half-life at 45°C was 41 times longer, and it showed an enhanced stability over a wide pH range. The lipase immobilized on cellulose microspheres showed a much higher loading efficiency, immobilization yield, and specificity constant than lipase immobilized on microcrystalline cellulose or millimeter-sized hydrogel beads. To increase the reusability of cellulose microspheres as an enzyme support material, magnetic cellulose microspheres were also prepared by adding Fe3O4. The lipase immobilized on magnetic cellulose microspheres was simply recovered using a magnet and continuously reused with a minimal loss of activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deng, J., W. Liang, and J. Fang (2016) Liquid crystal droplet-embedded biopolymer hydrogel sheets for biosensor applications. ACS Appl. Mater. Interfaces 8: 3928–3932.

    Article  CAS  PubMed  Google Scholar 

  2. Popa, E. G., M. E. Gomes, and R. L. Reis (2011) Cell delivery systems using alginate-carrageenan hydrogel beads and fibers for regenerative medicine applications. Biomacromolecules 12: 3952–3961.

    Article  CAS  PubMed  Google Scholar 

  3. Matto, M. and Q. Husain (2009) Calcium alginate-starch hybrid support for both surface immobilization and entrapment of bitter gourd (Momordica charantia) peroxidase. J. Mol. Catal. B: Enzym. 57: 164–170.

    Article  CAS  Google Scholar 

  4. Betigeri, S. S. and S. H. Steven (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23: 3627–3636.

    Article  CAS  PubMed  Google Scholar 

  5. Sangeetha, K. and T. E. Abraham (2008) Investigation on the development of sturdy bioactive hydrogel beads. J. Appl. Polym. Sci. 107: 2899–2908.

    Article  CAS  Google Scholar 

  6. Zhang, Z., R. Zhang, L. Chen, and D. J. McClements (2016) Encapsulation of lactase (β-galactosidase) into κ-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chem. 200: 69–75.

    Article  CAS  PubMed  Google Scholar 

  7. Jegannathan, K. R., E. S. Chan, and P. Ravindra (2009) Physical and stability characteristics of Burkholderia cepacia lipase encapsulated in κ-carrageenan. J. Mol. Catal. B. Enzym. 58: 78–83.

    Article  CAS  Google Scholar 

  8. Swatloski, R. P., S. K. Spear, J. D. Holbrey, and R.D. Rogers (2002) Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124: 4974–7975.

    Article  CAS  PubMed  Google Scholar 

  9. Turner, M. B., S.K. Spear, J. D. Holbrey, and R. D. Rogers (2004) Production of bioactive cellulose films reconstituted from ionic liquids. Biomacromolucules 5: 1379–1384.

    Article  CAS  Google Scholar 

  10. Jo, S., Y. Oh, S. Park, E. Kan, and S. H. Lee (2017) Cellulose/carrageenan/TiO2 nanocomposite for adsorption and photodegradation of cationic dye. Biotechnol. Bioproc. Eng. 22: 734–738.

    Article  CAS  Google Scholar 

  11. Liu, Z., H. Wang, B. Li, Y. Jiang, G. Yu, and X. Mu (2012) Biocompatible magnetic cellulose-chitosan hybrid gel microspheres reconstituted from ionic liquids for enzyme immobilization. J. Mater. Chem. 22: 15085–15091.

    Article  CAS  Google Scholar 

  12. Peng, S., H. Meng, Y. Ouyang, and J. Chang (2014) Nanoporous magnetic cellulose-chitosan composite microspheres: preparation, characterization, and application for Cu(II) adsorption. Ind. Eng. Chem. Res. 53: 2106–2113.

    Article  CAS  Google Scholar 

  13. Rama, K., P. Senapati, and M. K. Das (2005) Formulation and in vitro evaluation of ethyl cellulose microspheres containing zidovudine. J. Microencapsul. 22: 863–876.

    Article  CAS  Google Scholar 

  14. Du, K. F., M. Yan, Q. Y. Wang, and H. Song (2010) Preparation and characterizaiton of novel macroporous cellulose beads regenerated from ionic liquid for fast chromatography. J. Chromatogr. A. 1217(2010): 1298–1304.

    Article  CAS  PubMed  Google Scholar 

  15. Luo, X. and L. Zhang (2010) Immobilization of penicillin G acylase in epoxy-activated magnetic cellulose microspheres for improvement of biocatalytic stability and activities. Biomacromolecules 11: 2896–2903

    Article  CAS  PubMed  Google Scholar 

  16. Park, S., S. H. Kim, J. H. Kim, H. Yu, H. J. Kim, Y. Yang, H. Kim, Y. H. Kim, S. H. Ha, and S.H. Lee (2015) Application of cellulose/lignin hydrogel beads as novel supports for immobilizing lipase. J. Mol. Catal. B. Enzym. 119: 33–39.

    Article  CAS  Google Scholar 

  17. Kim, H. J., J. N. Jin, E. Kan, K. J. Kim, and S. H. Lee (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioproc. Eng. 22: 89–94.

    Article  CAS  Google Scholar 

  18. Pei, Y., X. Wu, G. Xu, Z. Sun, X. Zheng, J. Liu, and K. Tang (2016) Tannin-immobilized cellulose microspheres as effective adsorbents for removing dye (methlylene blue) from aqueous solution. J. Chem. Technol. Biotechnol. 92: 1276–1284.

    Article  Google Scholar 

  19. Luo, X. and L. Zhang (2010) Creation of regenerated cellulose microspheres with diameter ranging from micron to millimeter for chromatography applications. J. Chromatogr. A. 1217: 5922–5929.

  20. Seema, S. B. and H. N. Steven (2002) Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials 23: 3627–3636.

    Article  Google Scholar 

  21. Shuai, W. T., R. K. Das, M. Naghdi, S. K. Brar, and M. Verma (2018) A review on the important aspects of lipase immobilization on nanomaterials. Appl. Biochem. Biotechnol. 64: 496–508.

    Article  Google Scholar 

  22. Kim, H. J., S. Park, S. H. Kim, J. H. Kim, H. J. Yu, H. J. Kim, Y. H. Yang, E. S. Kan, Y. H. Kim, and S. H. Lee (2015) Biocompatible cellulose nanocrystals as supports to immobilize lipase. J. Mol. Catal. B: Enzym. 122: 170–178.

    Article  CAS  Google Scholar 

  23. Mandal, S., S. Ghosh, C. Banerjee, J. Kuchlyan, D. Banik, and N. Sarkar (2013) A novel ionic liquid-in-oil microemulsion composed of biologically acceptable components: an excitation wavelength dependent fluorescence resonance energy transfer study. J. Phys. Chem. B. 117: 3221–3231.

    Article  CAS  PubMed  Google Scholar 

  24. Davis, C. R., S. L. Kelly, and K. A. Erk (2018) Comparing laser diffraction and optical microscopy for characterizing superabsorbent polymer particle morphology, size, and swelling capacity. J. Appl. Polym. Sci. 135: 46055.

    Article  Google Scholar 

  25. Geluk, M. A., W. Norde, H. K. A. I. Van Kalsbeek, and K. Van’t Riet (1992) Adsorption of lipase from Candida rugosa on cellulose and its influence on lipolytic activity. Enzyme Microb. Technol. 14: 748–754.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Hyun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, S., Park, S., Oh, Y. et al. Development of Cellulose Hydrogel Microspheres for Lipase Immobilization. Biotechnol Bioproc E 24, 145–154 (2019). https://doi.org/10.1007/s12257-018-0335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0335-0

Keywords

Navigation