Skip to main content
Log in

Preparation of in situ Injectable Chitosan/Gelatin Hydrogel Using an Acid-tolerant Tyrosinase

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

An in situ injectable chitosan/gelatin hydrogel was formed under slightly acidic conditions (pH 4.0 ~ 4.5) using an acid-tolerant tyrosinase, tyrosinase-CNK. A homogeneous chitosan/tyrosinase-CNK solution was prepared in one part of a dual-barrel syringe, and highly soluble gelatin in distilled water was prepared in the other part of the syringe without any additional crosslinking materials. Chitosan/gelatin hydrogel was formed in situ by simple injection of the solutions at room temperature followed by curing at 37°C. However, conventional mushroom tyrosinase did not catalyze this permanent gel formation. Tyrosinase- CNK-catalyzed glycol chitosan/gelatin hydrogel was similarly formed by this in situ injection approach. The hydrogels exhibited a high swelling ratio of 20-fold their own weight, interconnected micropores with an average diameter of approximately 260 μm and in vitro biodegradability suitable for tissue engineering and drug delivery applications. These results showed that tyrosinase-CNK-mediated chitosan/gelatin hydrogel formation has remarkable potential for the development of novel formulations for in situ injectable gel-forming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patterson, J., M. M. Martino, and J. A. Hubbell (2010) Biomimetic materials in tissue engineering. Mater. Today 13: 14–22.

    Article  CAS  Google Scholar 

  2. Liu, M., X. Zeng, C. Ma, H. Yi, Z. Ali, X. B. Mou, S. Li, Y. Deng, and N. Y. He (2017) Injectable hydrogels for cartilage and bone tissue engineering. Bone Res. 5: 17014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoon, D. Y. and J. C. Kim (2017) Hydrogel composed of acrylic coumarin and acrylic Pluronic F-127 and its photo- and thermoresponsive release property. Biotechnol. Bioproc. Eng. 22: 481–488.

    Article  CAS  Google Scholar 

  4. Karavasili, C. and D. G. Fatouros (2016) Smart materials: in situ gel-forming systems for nasal delivery. Drug Discov. Today 21: 157–166.

    Article  CAS  PubMed  Google Scholar 

  5. Choi, Y. R., E. H. Kim, S. Lim, and Y. S. Choi (2018) Efficient preparation of a permanent chitosan/gelatin hydrogel using an acid-tolerant tyrosinase. Biochem. Eng. J. 129: 50–56.

    Article  CAS  Google Scholar 

  6. Periayah, M. H., A. S. Halim, and A. Z. Saad (2016) Chitosan: A promising marine polysaccharide for biomedical research. Pharmacogn. Rev. 10: 39–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kim, H. J., J. N. Jin, E. Kan, K. J. Kim, and S. H. Lee (2017) Bacterial cellulose-chitosan composite hydrogel beads for enzyme immobilization. Biotechnol. Bioproc. Eng. 22: 89–94.

    Article  CAS  Google Scholar 

  8. LogithKumar, R., A. KeshavNarayan, S. Dhivya, A. Chawla, S. Saravanan, and N. Selvamurugan (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohydr. Polym. 151: 172–188.

    Article  CAS  PubMed  Google Scholar 

  9. Song, K. D., L. Y. Li, W. F. Li, Y. X. Zhu, Z. R. Jiao, M. Lim, M. Y. Fang, F. X. Shi, L. Wang, and T. Q. Liu (2015) Threedimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Mat. Sci. Eng. C-Mater. 55: 384–392.

    Article  CAS  Google Scholar 

  10. Su, K. and C. M. Wang (2015) Recent advances in the use of gelatin in biomedical research. Biotechnol. Lett. 37: 2139–2145.

    Article  CAS  PubMed  Google Scholar 

  11. Kim, H., Y. J. Yeon, Y. R. Choi, W. Song, S. P. Pack, and Y. S. Choi (2016) A cold-adapted tyrosinase with an abnormally high monophenolase/diphenolase activity ratio originating from the marine archaeon Candidatus Nitrosopumilus koreensis. Biotechnol. Lett. 38: 1535–1542.

    Article  CAS  PubMed  Google Scholar 

  12. Baker, M. I., S. P. Walsh, Z. Schwartz, B. D. Boyan (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications, J. Biomed. Mater. Res. Part B 100: 1451–1457.

    Article  CAS  Google Scholar 

  13. Kalra, A., A. Lowe, and A. M. Al-Jumaily (2016) Mechanical behavior of skin: a review, J. Mater. Sci. Eng. 5: 1000254.

    Google Scholar 

  14. Schneider, C. A., W. S. Rasband, and K. W. Eliceiri (2012) NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9: 671–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, T. H., H. D. Embree, E. M. Brown, M. M. Taylor, and G. F. Payne (2003) Enzyme-catalyzed gel formation of gelatin and chitosan: potential for in situ applications. Biomaterials 24: 2831–2841.

    Article  CAS  PubMed  Google Scholar 

  16. Do, H., E. Kang, B. Yang, H. J. Cha, and Y. S. Choi (2017) A tyrosinase, mTyr-CNK, that is functionally available as a monophenol monooxygenase. Sci. Rep. 7: 17267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Choi, Y. R., H. Do, D. Jeong, J. Park, Y. S. Choi (2016) Reaction stability of the recombinant tyorisinase-CNK originating from the psychrophilic marine microorganism Candidatus Nitrosopumilus Koreensis. Clean Tech. 22: 175–180.

    Article  Google Scholar 

  18. Hubbell, J. A. (1995) Biomaterials in tissue engineering. Biotechnology (NY) 13: 565–576.

    CAS  Google Scholar 

  19. Guo, L., R. H. Colby, C. P. Lusignan, and A. M. Howe (2003) Physical gelation of gelatin studied with rheo-optics. Macromolecules 36: 10009–10020.

    Article  CAS  Google Scholar 

  20. Alizadeh, M., F. Abbasi, A. B. Khoshfetrat, and H. Ghaleh (2013) Microstructure and characteristic properties of gelatin/ chitosan scaffold prepared by a combined freeze-drying/leaching method. Mat. Sci. Eng. C-Mater. 33: 3958–3967.

    Article  CAS  Google Scholar 

  21. Vlierberghe, S. V., V. Cnudde, P. Dubruel, B. Masschaele, A. Cosijns, I. D. Paepe, P. J. S. Jacobs, L. V. Hoorebeke, J. P. Remon, and E. Schacht (2007) Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis. Biomacromolecules. 8: 331–337.

    Article  CAS  PubMed  Google Scholar 

  22. Qiao, C., X. Cao, and F. Wang (2012) Swelling behavior study of physically crosslinked gelatin hydrogels. Polym. Polym. Compos. 20: 53–58.

    CAS  Google Scholar 

  23. Li, J. and F. Yao (2012) Environment-stimuli response of chitosan-based hydrogels. In: K. Yao, J. Li, F. Yao, Y. Yin (eds.). Chitosan-based hydrogels. CRC Press,6000 Broken Sound Parkway, NW, USA.

    Google Scholar 

  24. Shen, Z. S., X. Cui, R. X. Hou, Q. Li, H. X. Deng, and J. Fu (2015) Tough biodegradable chitosan-gelatin hydrogels via in situ precipitation for potential cartilage tissue engineering. Rsc. Adv. 5: 55640–55647.

    Article  CAS  Google Scholar 

  25. Nieto-Suarez, M., M. A. Lopez-Quintela, and M. Lazzari (2016) Preparation and characterization of cross-linked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohyd. Polym. 141: 175–183.

    Article  CAS  Google Scholar 

  26. Gariboldi, M. I. and S. M. Best (2015) Effect of ceramic scaffold architectural parameters on biological response. Front Bioeng. Biotechnol. 3: 151.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saraiva, S. M., S. P. Miguel, M. P. Ribeiro, P. Coutinho, and I. J. Correia (2015) Synthesis and characterization of a photocrosslinkable chitosan-gelatin hydrogel aimed for tissue regeneration. Rsc. Adv. 5: 63478–63488.

    Article  CAS  Google Scholar 

  28. Yang, C., L. Xu, Y. Zhou, X. M. Zhang, X. Huang, M. Wang, Y. Han, M. L. Zhai, S. C. Wei, and J. Q. Li (2010) A green fabrication approach of gelatin/CM-chitosan hybrid hydrogel for wound healing. Carbohyd. Polym. 82: 1297–1305.

    Article  CAS  Google Scholar 

  29. Correia, C. R., L. S. Moreira-Teixeira, L. Moroni, R. L. Reis, C. A. van Blitterswijk, M. Karperien, and J. F. Mano (2011) Chitosan scaffolds containing hyaluronic acid for cartilage tissue engineering. Tissue Eng. Part. C-Me 17: 717–730.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoo Seong Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E.H., Lim, S., Kim, T.E. et al. Preparation of in situ Injectable Chitosan/Gelatin Hydrogel Using an Acid-tolerant Tyrosinase. Biotechnol Bioproc E 23, 500–506 (2018). https://doi.org/10.1007/s12257-018-0315-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0315-4

Keywords

Navigation