Skip to main content
Log in

Dissociation of Systemic Glucose Homeostasis from Triacylglyceride Accumulation by Reduced Acsl6 Expression in Skeletal Muscle

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Long chain acyl-CoA synthetase (ACSL) is an enzyme that activates fatty acids before they are further metabolized. ACSL6 is the one of main ACSL isoforms exclusively expressed in skeletal muscle, but the consequences of the suppression of this gene in systemic glucose homeostasis has yet to be reported. Hence, we investigated the roles of ACSL6 gene in glucose tolerance and TAG distribution in physiological conditions. Eight-week-old male C57BL/6J mice were administered with control or Acsl6 siRNAs and then fed with either AIN-93 control diet or high fat diet. At seven days after the first siRNA injection, oral glucose tolerance tests and TAG quantification were performed. In vivo administration of Acsl6 siRNA decreased Acsl6 expression only in skeletal muscle under AIN-93 or a high fat diet. However Acsl6 siRNA injection to animals increased TAG accumulation in the liver without the change of Acsl6 expression. Atelocollagen mediated Acsl6 suppression enhanced whole-body glucose tolerance coinciding with decreased TAG accumulation in skeletal muscle of mice fed an AIN-93 diet. However, the improved glucose tolerance by Acsl6 reduction was ablated by high fat diet. Moreover reduced Acsl6 did not alter the phosphorylation of insulin signaling proteins in skeletal muscle. These results suggest that Acsl6 reduction in skeletal muscle enhances glucose homeostasis and dissociates the insulin responses from TAG accumulation in skeletal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fabbrini, E., F. Magkos, B. S. Mohammed, T. Pietka, N. A. Abumrad, B. W. Patterson, A. Okunade, and S. Klein (2009) Intrahepatic fat, not visceral fat, is linked with metabolic complications of obesity. Proc. Natl. Acad. Sci. US. 106: 15430–15435.

    Article  Google Scholar 

  2. Haemmerle, G., A. Lass, R. Zimmermann, G. Gorkiewicz, C. Meyer, J. Rozman, G. Heldmaier, R. Maier, C. Theussl, S. Eder, D. Kratky, E. F. Wagner, M. Klingenspor, G. Hoefler, and R. Zechner (2006) Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Scienc. 312: 734–737.

    Article  CAS  Google Scholar 

  3. Pan, D. A., S. Lillioja, A. D. Kriketos, M. R. Milner, L. A. Baur, C. Bogardus, A. B. Jenkins, and L. H. Storlien, (1997) Skeletal muscle triglyceride levels are inversely related to insulin action. Diabete. 46: 983–988.

    Article  CAS  Google Scholar 

  4. Minehira, K., S. G. Young, C. J. Villanueva, L. Yetukuri, M. Oresic, M. K. Hellerstein, R. V. Farese, J. D. Jr. Horton, F. Preitner, B. Thorens, and L. Tappy (2008) Blocking VLDL secretion causes hepatic steatosis but does not affect peripheral lipid stores or insulin sensitivity in mice. J. Lipid Res. 49: 2038–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Monetti, M., M. C. Levin, M. J. Watt, M. P. Sajan, S. Marmor, B. K. Hubbard, S. D. Stevens, J. R. Bain, C. B. Newgard, R. V. Sr. Farese, A. L. Hevener, and R. V. Jr. Farese (2007) Dissociation of hepatic steatosis and insulin resistance in mice overexpressing DGAT in the liver. Cell Metab. 6: 69–78.

    Article  CAS  PubMed  Google Scholar 

  6. Levin, M. C., M. Monetti, M. J. Watt, M. P. Sajan, R. D. Stevens, J. R. Bain, C. B. Newgard, R. V. Sr. Farese, and R. V. Jr. Farese (2007) Increased lipid accumulation and insulin resistance in transgenic mice expressing DGAT2 in glycolytic (type II) muscle. Am. J Physiol Endocrinol. Meta. 293: E1772–E1781.

    Article  CAS  Google Scholar 

  7. Galgani, J. E., C. Moro, and E. Ravussin (2008) Metabolic flexibility and insulin resistance. Am. J. Physiol. Endocrinol. Metab. 295: E1009–E1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bu, S. Y., M. T. Mashek, and D. G. Mashek (2009) Suppression of long chain acyl–CoA synthetase 3 decreases hepatic de novo fatty acid synthesis through decreased transcriptional activity. J. Biol. Chem. 284: 30474–30483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bu, S. Y. and D. G. Mashek (2010) Hepatic long–chain acyl–CoA synthetase 5 mediates fatty acid channeling between anabolic and catabolic pathways. J. Lipid Res. 51: 3270–3280.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Li, L. O., J. M. Ellis, H. A. Paich, S. Wang, N. Gong, G. Altshuller, R. J. Thresher, T. R. Koves, S. M. Watkins, D. M. Muoio, G. W. Cline, G. I. Shulman, and R. A. Coleman (2009) Liver–specific loss of long chain acyl–CoA synthetase–1 decreases triacylglycerol synthesis and beta–oxidation and alters phospholipid fatty acid composition. J. Biol. Chem. 284: 27816–27826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mashek, D. G., L. O. Li, and R. A. Coleman (2007) Long–chain acyl–CoA synthetases and fatty acid channeling. Future. Lipidol. 2: 465–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bowman, T. A., K. R. O’Keeffe, T. D’Aquila, Q. W. Yan, J. D. Griffin, E. A. Killion, D. M. Salter, D. G. Mashek, K. K. Buhman, and A. S. Greenberg (2016) Acyl CoA synthetase 5 (ACSL5) ablation in mice increases energy expenditure and insulin sensitivity and delays fat absorption. Mol. Metab. 5: 210–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Puri, V., S. Ranjit, S. Konda, S. M. Nicoloro, J. Straubhaar, A. Chawla, M. Chouinard, C. Lin, A. Burkart, S. Corvera, R. A. Perugini, and M. P. Czech (2008) Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc. Natl. Acad. Sci. US. 105: 7833–7838.

    Article  Google Scholar 

  14. Li, L. O., T. J. Grevengoed, D. S. Paul, O. Ilkayeva, T. R. Koves, F. Pascual, C. B. Newgard, D. M. Muoio, and R. A. Coleman (2015) Compartmentalized acyl–CoA metabolism in skeletal muscle regulates systemic glucose homeostasis. Diabete. 64: 23–35.

    Article  CAS  Google Scholar 

  15. Mashek, D. G., L. O. Li, and R. A. Coleman (2006) Rat longchain acyl–CoA synthetase mRNA, protein, and activity vary in tissue distribution and in response to diet. J. Lipid Res. 47: 2004–2010.

    Article  CAS  PubMed  Google Scholar 

  16. Marszalek, J. R., C. Kitidis, A. Dararutana, and H. F. Lodish (2004) Acyl–CoA synthetase 2 overexpression enhances fatty acid internalization and neurite outgrowth. J. Biol. Chem. 279: 23882–23891.

    Article  CAS  PubMed  Google Scholar 

  17. Marszalek, J. R., C. Kitidis, C. C. Dirusso, and H. F. Lodish (2005) Long–chain acyl–CoA synthetase 6 preferentially promotes DHA metabolism. J. Biol. Chem. 280: 10817–10826.

    Article  CAS  PubMed  Google Scholar 

  18. Yuan, Y., N. Makita, D. Cao, K. Mihara, K. Kadomatsu, and Y. Takei (2015) Atelocollagen–mediated intravenous siRNA delivery specific to tumor tissues orthotopically xenografted in prostates of nude mice and its anticancer effects. Nucleic Acid Ther. 25: 85–94.

    Article  CAS  PubMed  Google Scholar 

  19. Forootan, S. S., Z. Z. Bao, F. S. Forootan, L. Kamalian, Y. Zhang, A. Bee, C. S. Foster, and Y. Ke (2010) Atelocollagen–delivered siRNA targeting the FABP5 gene as an experimental therapy for prostate cancer in mouse xenografts. Int. J. Oncol. 36: 69–76.

    CAS  PubMed  Google Scholar 

  20. Toyooka, T., H. Nawashiro, N. Shinomiya, and K. Shima (2011) Down–regulation of glial fibrillary acidic protein and vimentin by RNA interference improves acute urinary dysfunction associated with spinal cord injury in rats. J. Neurotrauma 28: 607–618.

    Article  PubMed  Google Scholar 

  21. BLIGH, E. G., and W. J. DYER (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    Article  CAS  PubMed  Google Scholar 

  22. Ong, K. T., M. T. Mashek, S. Y. Bu, A. S. Greenberg, and D. G. Mashek (2011) Adipose triglyceride lipase is a major hepatic lipase that regulates triacylglycerol turnover and fatty acid signaling and partitioning. Hepatolog. 53: 116–126.

    Article  CAS  Google Scholar 

  23. Gancheva S., T. Jelenik, E. Alvarez–Hernandez, and M. Roden (2018) Interorgan metabolic crosstalk in human insulin resistance. Physiol. Rev. 98: 1371–1415.

    Article  PubMed  Google Scholar 

  24. Choi, J. W. and J. W. Yun (2016) Prohibitin seficiency causes opposing lipid metabolism between 3T3–L1 adipocytes and Clone 9 hepatocytes. Biotechnol. Bioproc. Eng. 21: 294–298.

    Article  CAS  Google Scholar 

  25. Sitnick, M. T., M. K. Basantani, L. Cai, G. Schoiswohl, C. F. Yazbeck, G. Distefano, V. Ritov, J. P. DeLany, R. Schreiber, D. B. Stolz, N. P. Gardner, P. C. Kienesberger, T. Pulinilkunnil, R. Zechner, B. H. Goodpaster, P. Coen, and E. E. Kershaw (2013) Skeletal muscle triacylglycerol hydrolysis does not influence metabolic complications of obesity. Diabete. 62: 3350–3361.

    Article  CAS  Google Scholar 

  26. Ong, K. T., M. T. Mashek, S. Y. Bu, and D. G. Mashek (2013) Hepatic ATGL knockdown uncouples glucose intolerance from liver TAG accumulation. FASEB J. 27: 313–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bosma, M., M. K. Hesselink, L. M. Sparks, S. Timmers, M. J. Ferraz, F. Mattijssen, D. van Beurden, G Schaart, M. H. de Baets, F. K. Verheyen, S. Kersten, and P. Schrauwen (2012) Perilipin 2 improves insulin sensitivity in skeletal muscle despite elevated intramuscular lipid levels. Diabete. 61: 2679–2690.

    Article  CAS  Google Scholar 

  28. Lass, A., R. Zimmermann, G. Haemmerle, M. Riederer, G. Schoiswohl, M. Schweiger, P. Kienesberger, J. G. Strauss, G. Gorkiewicz, and R. Zechner. (2006) Adipose triglyceride lipase–mediated lipolysis of cellular fat stores is activated by CGI–58 and defective in Chanarin–Dorfman Syndrome. Cell Metab. 3: 309–319.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, W., S. Y. Bu, M. T. Mashek, I. Sullivan, Z. Sibai, S. A. Khan, O. Ilkayeva, C. B. Newgard, D. G. Mashek, and T. G. Unterman (2016) Integrated regulation of hepatic lipid and glucose metabolism by adipose triacylglycerol lipase and FoxO proteins. Cell Rep. 15: 349–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Seldin, M. M., X. Lei, S. Y. Tan, K. P. Stanson, Z. Wei, and G. W. Wong (2013) Skeletal muscle–derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J. Biol. Chem. 288: 36073–36082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This research was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST)(2012R1A1A1019253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to So Young Bu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.Y., Kim, AR., Jung, YH. et al. Dissociation of Systemic Glucose Homeostasis from Triacylglyceride Accumulation by Reduced Acsl6 Expression in Skeletal Muscle. Biotechnol Bioproc E 23, 465–472 (2018). https://doi.org/10.1007/s12257-018-0261-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0261-1

Keywords

Navigation