Skip to main content
Log in

Water-Soluble Red Pigment Production by Paecilomyces sinclairii and Biological Characterization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Natural pigments have several advantages over synthetic colorants. In this study, the production of red pigment produced by Paecilomyces sinclairii in microbial fermentation was demonstrated and the pigment was purified and characterized. The red pigment was produced from submerged fungal fermentation and fractionated by medium pressure flash chromatography. After fractionation, the spectrophotometric characterization of the red pigment revealed an λmax at 520 nm. Antimicrobial activity of the red pigment fraction was also studied against Escherichia coli O157 and Pseudomonas aeruginosa PAO1. The fraction (F2-F6) of the red pigment exhibited broad-spectrum antimicrobial activity in both bacteria. These results demonstrate the potential of this pigment in inhibiting bacterial growth and in food processing and other foodrelated applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cho, Y. J., J. P. Park, H. J. Hwang, S. W. Kim, J. W. Choi, and J. W. Yun (2002) Production of red pigment by submerged culture of Paecilomyces sinclairii. Lett. Appl. Microbiol. 35: 195–202.

    Article  CAS  Google Scholar 

  2. Unagul, P., P. Wongsa, P. Kittakoop, S. Intamas, P. Srikitikulchai, and M. Tanticharoen (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J. Ind. Microbiol. Biotechnol. 32: 135–140.

    Article  CAS  Google Scholar 

  3. Kim, D., J. S. Lee, Y. K. Park, J. F. Kim, H. Jeong, T. K. Oh, B. S. Kim, and C. H. Lee (2007) Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396. J. Appl. Microbiol. 102: 937–944.

    CAS  Google Scholar 

  4. Jung, H., C. Kim, K. Kim, and C. S. Shin (2003) Color characteristics of monascus pigments derived by fermentation with various amino acids. J. Agric. Food. Chem. 51: 1302–1306.

    Article  CAS  Google Scholar 

  5. Kim, C., H. Jung, J. H. Kim, and C. S. Shin (2006) Effect of monascus pigment derivatives on the electrophoretic mobility of bacteria, and the cell adsorption and antibacterial activities of pigments. Colloids Surf. B: Biointerf. 47: 153–159.

    Article  CAS  Google Scholar 

  6. Cho, Y. J., H. J. Hwang, S. W. Kim, C. H. Song, and J. W. Yun (2002) Effect of carbon source and aeration rate on broth rheology and fungal morphology during red pigment production by Paecilomyces sinclairii in a batch bioreactor. J. Biotechnol. 95: 13–23.

    Article  CAS  Google Scholar 

  7. de Araujo, H. W., K. Fukushima, and G. M. Takaki (2010) Prodigiosin production by Serratia marcescens UCP 1549 using renewable-resources as a low cost substrate. Molecules 15: 6931–6940.

    Article  Google Scholar 

  8. Hacene, H. and G. Lefebvre (1996) HP17, a new pigment-like antibiotic produced by a new strain of Spirillospora. J. Appl. Bacteriol. 80: 565–569.

    Article  CAS  Google Scholar 

  9. Fujikawa, H. and R. Akimoto (2011) A new blue pigment produced by Pantoea agglomerans and its production characteristics at various temperatures. Appl. Environ. Microbiol. 77: 172–178.

    Article  CAS  Google Scholar 

  10. Schewe, H., A. Kreutzer, I. Schmidt, C. Schubert, and J. Schrader (2017) High concentrations of biotechnologically produced astaxanthin by lowering pH in a Phaffia rhodozyma bioprocess. Biotechnol. Bioproc. Eng. 22: 319–326.

    Article  CAS  Google Scholar 

  11. Liu, G. Y. and V. Nizet (2009) Color me bad: microbial pigments as virulence factors. Trends Microbiol. 17: 406–413.

    Article  CAS  Google Scholar 

  12. Jeon, J. -Y., S. -Y. Kim, H. -Y. Kim, S. -H. Kim, B. -J. Lee, S. R. Lim, and H. -K. Choi (2018) Effects of agitating culture condition on the growth, metabolic and carotenoid profiles of Lemna paucicostata. Biotechnol. Bioproc. Eng. 23: 23–30.

    Article  CAS  Google Scholar 

  13. Yun, M., Y. -K. Oh, R. Praveenkumar, Y. -S. Seo, and S. Cho (2017) Contaminated bacterial effects and qPCR application to monitor a specific bacterium in Chlorella sp. KR-1 culture. Biotechnol. Bioproc. Eng. 22: 150–160.

    Article  CAS  Google Scholar 

  14. Zhou, Z. Y. and J. K. Liu (2010) Pigments of fungi (macromycetes). Nat. Prod. Rep. 27: 1531–1570.

    Article  CAS  Google Scholar 

  15. Kim, C., H. Jung, Y. O. Kim, and C. S. Shin (2006) Antimicrobial activities of amino acid derivatives of monascus pigments. FEMS Microbiol. Lett. 264: 117–124.

    Article  CAS  Google Scholar 

  16. Kongruang, S. (2011) Growth kinetics of biopigment production by Thai isolated Monascus purpureus in a stirred tank bioreactor. J. Ind. Microbiol. Biotechnol. 38: 93–99.

    Article  CAS  Google Scholar 

  17. Loret, M. O. and S. Morel (2010) Isolation and structural characterization of two new metabolites from monascus. J. Agric. Food. Chem. 58: 1800–1803.

    Article  CAS  Google Scholar 

  18. Babitha, S., C. R. Soccol, and A. Pandey (2007) Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. J. Basic Microbiol. 47: 118–126.

    Article  CAS  Google Scholar 

  19. Perez-Tomas, R., B. Montaner, E. Llagostera, and V. Soto-Cerrato (2003) The prodigiosins, proapoptotic drugs with anticancer properties. Biochem. Pharmacol. 66: 1447–1452.

    Article  CAS  Google Scholar 

  20. Lebeau, J., M. Venkatachalam, M. Fouillaud, T. Petit, F. Vinale, L. Dufosse, and Y. Caro (2017) Production and new extraction method of polyketide red pigments produced by Ascomycetous fungi from terrestrial and marine habitats. J. Fungi 3: 34–55.

    Article  Google Scholar 

  21. Velmurugan, P., Y. H. Lee, K. Nanthakumar, S. Kamala-Kannan, L. Dufossé, S. A. S. Mapari, and B. -T. Oh (2010) Water-soluble red pigments from Isaria farinosa and structural characterization of the main colored component. J. Basic Microbiol. 50: 581–590.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Pil Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, J.W., Park, J.P. Water-Soluble Red Pigment Production by Paecilomyces sinclairii and Biological Characterization. Biotechnol Bioproc E 23, 246–249 (2018). https://doi.org/10.1007/s12257-018-0103-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0103-1

Keywords

Navigation