Skip to main content

Advertisement

Log in

Optical Immunosensors for the Efficient Detection of Target Biomolecules

  • Review Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recently, immunosensors have attracted attention because they are widely applied for the detection of various pathogens. Among the commonly used immunosensors, the optical immunosensor features prominently as an effective tool for the quantification of the amount of antibodies, antigens, or haptens in complex samples with high sensitivity and specificity. However, very few studies provide comprehensive overviews of optical immunosensors. In this review, we present various methods and applications of optical immunosensors in pathogen detection. We introduced a concise definition of optical immunosensors and the principle of using them for detection. We subsequently discuss the main categories of optical immunosensors and their application to the detection of pathogens, as well as their advantages and limitations. Recent publications from 2006 to 2015 on variously designed optical immunosensors have also been updated. We conclude the review with a brief summary and discuss future directions of optical immunosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Boyden, S. V. (1966) Natural Antibodies and the Immune Response. Adv. Immunol. 5: 1–28.

    Article  CAS  Google Scholar 

  2. Axelrod, D., T. P. Burghardt, and N. L. Thompson (1984) Total Internal Reflection Fluorescence. Annu. Rev. Biophys. Bioeng. 13: 247–268.

    Article  CAS  Google Scholar 

  3. Rogers, K. R. and M. Mascini (1998) Biosensors for field analytical monitoring. Field Anal. Chem. Technol. 2: 317–331.

    Article  CAS  Google Scholar 

  4. Moreno-Bondi, M. -C., J. Mobley, J. -P. Alarie, and T. Vo-Dinh (2000) Antibody-based biosensor for breast cancer with ultrasonic regeneration. J. Biomed. Optic. 5: 350–354.

    Article  CAS  Google Scholar 

  5. Green, R. J., R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. Tendler (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomat. 21: 1823–1835.

    Article  CAS  Google Scholar 

  6. Homola, J., S. S. Yee, and G. Gauglitz (1999) Surface plasmon resonance sensors: Review. Sens. Actuators B: Chem. 54: 3–15.

    Article  CAS  Google Scholar 

  7. Mitchell, J. (2010) Small molecule immunosensing using surface plasmon resonance. Sens. 10: 7323–7346.

    Article  CAS  Google Scholar 

  8. Cao, C. and S. J. Sim (2007) Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitationfunctionalized gold nanoparticles: A femto molar level measurement of anti-glutamic acid decarboxylase antibody. Biosens. Bioelectron. 22: 1874–1880.

    Article  CAS  Google Scholar 

  9. Lakshmipriya, T., S. C. Gopinath, and T. H. Tang (2016) Biotinstreptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. PLoS One 11: e0151153.

    Article  Google Scholar 

  10. Funatsu, T., Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374: 555–559.

    Article  CAS  Google Scholar 

  11. Domenici, C., A. Schirone, M. Celebre, A. Ahluwalia, and D. De Rossi (1995) Development of a TIRF immunosensor: modelling the equilibrium behaviour of a competitive system. Biosens. Bioelectron. 10: 371–378.

    Article  CAS  Google Scholar 

  12. Poulter, N. S., W. T. Pitkeathly, P. J. Smith, and J. Z. Rappoport (2015) The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications. Advan. Fluores. Microscopy: Meth. Protocols. 1251: 1–23.

    CAS  Google Scholar 

  13. Tokunaga, M., K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235: 47–53.

    Article  CAS  Google Scholar 

  14. Zhang, H. and P. Guo (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67: 169–176.

    Article  CAS  Google Scholar 

  15. Schneider, R., T. Glaser, M. Berndt, and S. Diez (2013) Using a quartz paraboloid for versatile wide-field TIR microscopy with sub-nanometer localization accuracy. Optics Exp. 21: 3523–3539.

    Article  CAS  Google Scholar 

  16. González-Martínez, M. A., R. Puchades, and A. Maquieira (1999) On-line immunoanalysis for environmental pollutants: From batch assays to automated sensors. TrAC Trends Anal. Chem. 18: 204–218.

    Article  Google Scholar 

  17. Khijwania, S. and B. Gupta (1999) Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe. Optic. Quantum Electron. 31: 625–636.

    Article  CAS  Google Scholar 

  18. Littlejohn, D., D. Lucas, and L. Han (1999) Bent silica fiber evanescent absorption sensors for near-infrared spectroscopy. Appl. Spectros. 53: 845–849.

    Article  CAS  Google Scholar 

  19. Khijwania, S. and B. Gupta (2000) Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe. Optics Communicat. 175: 135–137.

    Article  CAS  Google Scholar 

  20. Hale, Z., F. Payne, R. Marks, C. Lowe, and M. Levine (1996) The single mode tapered optical fibre loop immunosensor. Biosens. Bioelectron. 11: 137–148.

    Article  CAS  Google Scholar 

  21. Grazia, A., M. Riccardo, and F. L. Ciaccheri (1998) Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers. Appl. Spectros. 52: 546–551.

    Article  Google Scholar 

  22. Villatoro, J., D. Luna-Moreno, and D. Monzón-Hernández (2005) Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sens. Actuators B: Chem. 110: 23–27.

    Article  CAS  Google Scholar 

  23. Díaz-Herrera, N., M. Navarrete, O. Esteban, and A. González-Cano (2003) A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Measurement Sci. Technol. 15: 353.

    Article  Google Scholar 

  24. MacKenzie, H. S. and F. P. Payne (1990) Evanescent field amplification in a tapered single-mode optical fibre. Electron. Lett. 26: 130–132.

    Article  Google Scholar 

  25. Guo, S. and S. Albin (2003) Transmission property and evanescent wave absorption of cladded multimode fiber tapers. Optics Exp. 11: 215–223.

    Article  Google Scholar 

  26. Ahmad, M. and L. L. Hench (2005) Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens. Bioelectron. 20: 1312–1319.

    Article  CAS  Google Scholar 

  27. Badley, R., R. Drake, I. Shanks, A. Smith, P. Stephenson, and J. Thomas (1987) Optical biosensors for immunoassays: The fluorescence capillary-fill device [and Discussion]. Philosophical Transactions of the Royal Society of London B: Biol. Sci. 316: 143–160.

    Article  CAS  Google Scholar 

  28. Misiakos, K. and S. Kakabakos (1998) A multi-band capillary immunosensor. Biosens. Bioelectron. 13: 825–830.

    Article  CAS  Google Scholar 

  29. Hamrle, J. and B. D. MacCraith (2000) Theory of the radiation of dipoles placed within a multilayer system. Appl. Optics. 39: 3968–3977.

    Article  Google Scholar 

  30. Engström, H. A., P. O. Andersson, and S. Ohlson (2006) A label-free continuous total-internal-reflection-fluorescence-based immunosensor. Anal. Biochem. 357: 159–166.

    Article  Google Scholar 

  31. Käppel, N. D., F. Pröll, and G. Gauglitz (2007) Development of a TIRF-based biosensor for sensitive detection of progesterone in bovine milk. Biosens. Bioelectron. 22: 2295–2300.

    Article  Google Scholar 

  32. Lochhead, M. J., K. Todorof, M. Delaney, J. T. Ives, C. Greef, K. Moll, K. Rowley, K. Vogel, C. Myatt, and X. -Q. Zhang (2011) Rapid multiplexed immunoassay for simultaneous serodiagnosis of HIV-1 and coinfections. J. Clin. Microbiol. 49: 3584–3590.

    Article  CAS  Google Scholar 

  33. Xiao-hong, Z., S. Bao-dong, S. Han-chang, L. Lan-hua, G. Hong-li, and H. Miao (2014) An evanescent wave multi-channel immunosensor system for the highly sensitive detection of small analytes in water samples. Sens. Actuators B: Chem. 198: 150–156.

    Article  Google Scholar 

  34. Guo, H., X. Zhou, Y. Zhang, B. Song, L. Liu, J. Zhang, and H. Shi (2014) Highly sensitive and rapid detection of melamine in milk products by planar waveguide fluorescence immunosensor (PWFI). Sens. Actuators B: Chem. 194: 114–119.

    Article  CAS  Google Scholar 

  35. Scheffer, K. D., A. Gawlitza, G. A. Spoden, X. A. Zhang, C. Lambert, F. Berditchevski, and L. Florin (2013) Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. J. Virol. 87: 3435–3446.

    Article  CAS  Google Scholar 

  36. Lee, S., G. Park, S. K. Chakkarapani, and S. H. Kang (2015) Ultra-sensitive plasmonic nanometal scattering immunosensor based on optical control in the evanescent field layer. Biosens. Bioelectron. 63: 444–449.

    Article  CAS  Google Scholar 

  37. Mendonça, M., N. L. Conrad, F. R. Conceição, Â. N. Moreira, W. P. da Silva, J. A. Aleixo, and A. K. Bhunia (2012) Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol. 12: 1.

    Article  Google Scholar 

  38. Chen, L., C. Chan, K. Ni, P. Hu, T. Li, W. Wong, P. Balamurali, R. Menon, M. Shaillender, and B. Neu (2013) Label-free fiberoptic interferometric immunosensors based on waist-enlarged fusion taper. Sensors and Actuators B: Chem. 178: 176–184.

    Article  CAS  Google Scholar 

  39. Chen, L., C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, and P. Zu (2013) Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane. Sens. Actuators B: Chem. 188: 185–192.

    Article  CAS  Google Scholar 

  40. Liu, T., Y. Zhao, Z. Zhang, P. Zhang, J. Li, R. Yang, C. Yang, and L. Zhou (2014) A fiber optic biosensor for specific identification of dead Escherichia coli O157: H7. Sens. Actuators B: Chem. 196: 161–167.

    Article  CAS  Google Scholar 

  41. Wandermur, G., D. Rodrigues, R. Allil, V. Queiroz, R. Peixoto, M. Werneck, and M. Miguel (2014) Plastic optical fiber-based biosensor platform for rapid cell detection. Biosens. Bioelectron. 54: 661–666.

    Article  CAS  Google Scholar 

  42. Yildirim, N., F. Long, M. He, H. -C. Shi, and A. Z. Gu (2014) A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ. Sci. Proc. Impacts 16: 1379–1386.

    Article  CAS  Google Scholar 

  43. Yin, H. -Q., R. Xiao, Z. Rong, P. -P. Jin, C. -F. Ji, and J. -G. Zhang (2015) Establishment of evanescent wave fiber-optic immunosensor method for detection bluetongue virus. Methods 90: 65–67.

    Article  CAS  Google Scholar 

  44. Ton, X.-A., V. Acha, P. Bonomi, B. T. S. Bui, and K. Haupt (2015) A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. Biosens. Bioelectron. 64: 359–366.

    Article  CAS  Google Scholar 

  45. Algaar, F., E. Eltzov, M. M. Vdovenko, I. Y. Sakharov, L. Fajs, M. Weidmann, A. Mirazimi, and R. S. Marks (2015) Fiber-optic immunosensor for detection of Crimean-congo hemorrhagic fever IgG antibodies in patients. Anal. Chem. 87: 8394–8398.

    Article  CAS  Google Scholar 

  46. Niotis, A. E., C. Mastichiadis, P. S. Petrou, I. Christofidis, S. E. Kakabakos, A. Siafaka-Kapadai, and K. Misiakos (2010) Dualcardiac marker capillary waveguide fluoroimmunosensor based on tyramide signal amplification. Anal. Bioanal. Chem. 396: 1187–1196.

    Article  CAS  Google Scholar 

  47. Noah, N. M., S. K. Mwilu, O. A. Sadik, A. A. Fatah, and R. D. Arcilesi (2011) Immunosensors for quantifying cyclooxygenase 2 pain biomarkers. Clin. Chim. Acta 412: 1391–1398.

    Article  CAS  Google Scholar 

  48. Henares, T. G., Y. Uenoyama, Y. Nogawa, K. Ikegami, D. Citterio, K. Suzuki, S. -I. Funano, K. Sueyoshi, T. Endo, and H. Hisamoto (2013) Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assaycapillary isoelectric focusing (ELISA-cIEF). Anal. 138: 3139–3141.

    Article  CAS  Google Scholar 

  49. Yu, Q., X. Zhan, K. Liu, H. Lv, and Y. Duan (2013) Plasmaenhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-induced fluorescence spectroscopy. Anal. Chem. 85: 4578–4585.

    Article  CAS  Google Scholar 

  50. Mohammed, M. and M. Desmulliez (2014) Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection. Biosens. Bioelectron. 61: 478–484.

    Article  CAS  Google Scholar 

  51. Cao, Y. -C. (2015) A capillary based chemiluminscent multitarget immunoassay. J. Fluorescence 25: 563–568.

    Article  CAS  Google Scholar 

  52. Yu, Q., X. Wang, and Y. Duan (2014) Capillary-based threedimensional immunosensor assembly for high-performance detection of carcinoembryonic antigen using laser-induced fluorescence spectrometry. Anal. Chem. 86: 1518–1524.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonghoon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Hwang, J., Seo, Y. et al. Optical Immunosensors for the Efficient Detection of Target Biomolecules. Biotechnol Bioproc E 23, 123–133 (2018). https://doi.org/10.1007/s12257-018-0087-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0087-x

Keywords

Profiles

  1. Jonghoon Choi