Abstract
Recently, immunosensors have attracted attention because they are widely applied for the detection of various pathogens. Among the commonly used immunosensors, the optical immunosensor features prominently as an effective tool for the quantification of the amount of antibodies, antigens, or haptens in complex samples with high sensitivity and specificity. However, very few studies provide comprehensive overviews of optical immunosensors. In this review, we present various methods and applications of optical immunosensors in pathogen detection. We introduced a concise definition of optical immunosensors and the principle of using them for detection. We subsequently discuss the main categories of optical immunosensors and their application to the detection of pathogens, as well as their advantages and limitations. Recent publications from 2006 to 2015 on variously designed optical immunosensors have also been updated. We conclude the review with a brief summary and discuss future directions of optical immunosensors.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Boyden, S. V. (1966) Natural Antibodies and the Immune Response. Adv. Immunol. 5: 1–28.
Axelrod, D., T. P. Burghardt, and N. L. Thompson (1984) Total Internal Reflection Fluorescence. Annu. Rev. Biophys. Bioeng. 13: 247–268.
Rogers, K. R. and M. Mascini (1998) Biosensors for field analytical monitoring. Field Anal. Chem. Technol. 2: 317–331.
Moreno-Bondi, M. -C., J. Mobley, J. -P. Alarie, and T. Vo-Dinh (2000) Antibody-based biosensor for breast cancer with ultrasonic regeneration. J. Biomed. Optic. 5: 350–354.
Green, R. J., R. A. Frazier, K. M. Shakesheff, M. C. Davies, C. J. Roberts, and S. J. Tendler (2000) Surface plasmon resonance analysis of dynamic biological interactions with biomaterials. Biomat. 21: 1823–1835.
Homola, J., S. S. Yee, and G. Gauglitz (1999) Surface plasmon resonance sensors: Review. Sens. Actuators B: Chem. 54: 3–15.
Mitchell, J. (2010) Small molecule immunosensing using surface plasmon resonance. Sens. 10: 7323–7346.
Cao, C. and S. J. Sim (2007) Signal enhancement of surface plasmon resonance immunoassay using enzyme precipitationfunctionalized gold nanoparticles: A femto molar level measurement of anti-glutamic acid decarboxylase antibody. Biosens. Bioelectron. 22: 1874–1880.
Lakshmipriya, T., S. C. Gopinath, and T. H. Tang (2016) Biotinstreptavidin competition mediates sensitive detection of biomolecules in enzyme linked immunosorbent assay. PLoS One 11: e0151153.
Funatsu, T., Y. Harada, M. Tokunaga, K. Saito, and T. Yanagida (1995) Imaging of single fluorescent molecules and individual ATP turnovers by single myosin molecules in aqueous solution. Nature 374: 555–559.
Domenici, C., A. Schirone, M. Celebre, A. Ahluwalia, and D. De Rossi (1995) Development of a TIRF immunosensor: modelling the equilibrium behaviour of a competitive system. Biosens. Bioelectron. 10: 371–378.
Poulter, N. S., W. T. Pitkeathly, P. J. Smith, and J. Z. Rappoport (2015) The physical basis of total internal reflection fluorescence (TIRF) microscopy and its cellular applications. Advan. Fluores. Microscopy: Meth. Protocols. 1251: 1–23.
Tokunaga, M., K. Kitamura, K. Saito, A. H. Iwane, and T. Yanagida (1997) Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy. Biochem. Biophys. Res. Commun. 235: 47–53.
Zhang, H. and P. Guo (2014) Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67: 169–176.
Schneider, R., T. Glaser, M. Berndt, and S. Diez (2013) Using a quartz paraboloid for versatile wide-field TIR microscopy with sub-nanometer localization accuracy. Optics Exp. 21: 3523–3539.
González-Martínez, M. A., R. Puchades, and A. Maquieira (1999) On-line immunoanalysis for environmental pollutants: From batch assays to automated sensors. TrAC Trends Anal. Chem. 18: 204–218.
Khijwania, S. and B. Gupta (1999) Fiber optic evanescent field absorption sensor: effect of fiber parameters and geometry of the probe. Optic. Quantum Electron. 31: 625–636.
Littlejohn, D., D. Lucas, and L. Han (1999) Bent silica fiber evanescent absorption sensors for near-infrared spectroscopy. Appl. Spectros. 53: 845–849.
Khijwania, S. and B. Gupta (2000) Maximum achievable sensitivity of the fiber optic evanescent field absorption sensor based on the U-shaped probe. Optics Communicat. 175: 135–137.
Hale, Z., F. Payne, R. Marks, C. Lowe, and M. Levine (1996) The single mode tapered optical fibre loop immunosensor. Biosens. Bioelectron. 11: 137–148.
Grazia, A., M. Riccardo, and F. L. Ciaccheri (1998) Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers. Appl. Spectros. 52: 546–551.
Villatoro, J., D. Luna-Moreno, and D. Monzón-Hernández (2005) Optical fiber hydrogen sensor for concentrations below the lower explosive limit. Sens. Actuators B: Chem. 110: 23–27.
Díaz-Herrera, N., M. Navarrete, O. Esteban, and A. González-Cano (2003) A fibre-optic temperature sensor based on the deposition of a thermochromic material on an adiabatic taper. Measurement Sci. Technol. 15: 353.
MacKenzie, H. S. and F. P. Payne (1990) Evanescent field amplification in a tapered single-mode optical fibre. Electron. Lett. 26: 130–132.
Guo, S. and S. Albin (2003) Transmission property and evanescent wave absorption of cladded multimode fiber tapers. Optics Exp. 11: 215–223.
Ahmad, M. and L. L. Hench (2005) Effect of taper geometries and launch angle on evanescent wave penetration depth in optical fibers. Biosens. Bioelectron. 20: 1312–1319.
Badley, R., R. Drake, I. Shanks, A. Smith, P. Stephenson, and J. Thomas (1987) Optical biosensors for immunoassays: The fluorescence capillary-fill device [and Discussion]. Philosophical Transactions of the Royal Society of London B: Biol. Sci. 316: 143–160.
Misiakos, K. and S. Kakabakos (1998) A multi-band capillary immunosensor. Biosens. Bioelectron. 13: 825–830.
Hamrle, J. and B. D. MacCraith (2000) Theory of the radiation of dipoles placed within a multilayer system. Appl. Optics. 39: 3968–3977.
Engström, H. A., P. O. Andersson, and S. Ohlson (2006) A label-free continuous total-internal-reflection-fluorescence-based immunosensor. Anal. Biochem. 357: 159–166.
Käppel, N. D., F. Pröll, and G. Gauglitz (2007) Development of a TIRF-based biosensor for sensitive detection of progesterone in bovine milk. Biosens. Bioelectron. 22: 2295–2300.
Lochhead, M. J., K. Todorof, M. Delaney, J. T. Ives, C. Greef, K. Moll, K. Rowley, K. Vogel, C. Myatt, and X. -Q. Zhang (2011) Rapid multiplexed immunoassay for simultaneous serodiagnosis of HIV-1 and coinfections. J. Clin. Microbiol. 49: 3584–3590.
Xiao-hong, Z., S. Bao-dong, S. Han-chang, L. Lan-hua, G. Hong-li, and H. Miao (2014) An evanescent wave multi-channel immunosensor system for the highly sensitive detection of small analytes in water samples. Sens. Actuators B: Chem. 198: 150–156.
Guo, H., X. Zhou, Y. Zhang, B. Song, L. Liu, J. Zhang, and H. Shi (2014) Highly sensitive and rapid detection of melamine in milk products by planar waveguide fluorescence immunosensor (PWFI). Sens. Actuators B: Chem. 194: 114–119.
Scheffer, K. D., A. Gawlitza, G. A. Spoden, X. A. Zhang, C. Lambert, F. Berditchevski, and L. Florin (2013) Tetraspanin CD151 mediates papillomavirus type 16 endocytosis. J. Virol. 87: 3435–3446.
Lee, S., G. Park, S. K. Chakkarapani, and S. H. Kang (2015) Ultra-sensitive plasmonic nanometal scattering immunosensor based on optical control in the evanescent field layer. Biosens. Bioelectron. 63: 444–449.
Mendonça, M., N. L. Conrad, F. R. Conceição, Â. N. Moreira, W. P. da Silva, J. A. Aleixo, and A. K. Bhunia (2012) Highly specific fiber optic immunosensor coupled with immunomagnetic separation for detection of low levels of Listeria monocytogenes and L. ivanovii. BMC Microbiol. 12: 1.
Chen, L., C. Chan, K. Ni, P. Hu, T. Li, W. Wong, P. Balamurali, R. Menon, M. Shaillender, and B. Neu (2013) Label-free fiberoptic interferometric immunosensors based on waist-enlarged fusion taper. Sensors and Actuators B: Chem. 178: 176–184.
Chen, L., C. Chan, R. Menon, P. Balamurali, W. Wong, X. Ang, P. Hu, M. Shaillender, B. Neu, and P. Zu (2013) Fabry–Perot fiber-optic immunosensor based on suspended layer-by-layer (chitosan/polystyrene sulfonate) membrane. Sens. Actuators B: Chem. 188: 185–192.
Liu, T., Y. Zhao, Z. Zhang, P. Zhang, J. Li, R. Yang, C. Yang, and L. Zhou (2014) A fiber optic biosensor for specific identification of dead Escherichia coli O157: H7. Sens. Actuators B: Chem. 196: 161–167.
Wandermur, G., D. Rodrigues, R. Allil, V. Queiroz, R. Peixoto, M. Werneck, and M. Miguel (2014) Plastic optical fiber-based biosensor platform for rapid cell detection. Biosens. Bioelectron. 54: 661–666.
Yildirim, N., F. Long, M. He, H. -C. Shi, and A. Z. Gu (2014) A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples. Environ. Sci. Proc. Impacts 16: 1379–1386.
Yin, H. -Q., R. Xiao, Z. Rong, P. -P. Jin, C. -F. Ji, and J. -G. Zhang (2015) Establishment of evanescent wave fiber-optic immunosensor method for detection bluetongue virus. Methods 90: 65–67.
Ton, X.-A., V. Acha, P. Bonomi, B. T. S. Bui, and K. Haupt (2015) A disposable evanescent wave fiber optic sensor coated with a molecularly imprinted polymer as a selective fluorescence probe. Biosens. Bioelectron. 64: 359–366.
Algaar, F., E. Eltzov, M. M. Vdovenko, I. Y. Sakharov, L. Fajs, M. Weidmann, A. Mirazimi, and R. S. Marks (2015) Fiber-optic immunosensor for detection of Crimean-congo hemorrhagic fever IgG antibodies in patients. Anal. Chem. 87: 8394–8398.
Niotis, A. E., C. Mastichiadis, P. S. Petrou, I. Christofidis, S. E. Kakabakos, A. Siafaka-Kapadai, and K. Misiakos (2010) Dualcardiac marker capillary waveguide fluoroimmunosensor based on tyramide signal amplification. Anal. Bioanal. Chem. 396: 1187–1196.
Noah, N. M., S. K. Mwilu, O. A. Sadik, A. A. Fatah, and R. D. Arcilesi (2011) Immunosensors for quantifying cyclooxygenase 2 pain biomarkers. Clin. Chim. Acta 412: 1391–1398.
Henares, T. G., Y. Uenoyama, Y. Nogawa, K. Ikegami, D. Citterio, K. Suzuki, S. -I. Funano, K. Sueyoshi, T. Endo, and H. Hisamoto (2013) Novel fluorescent probe for highly sensitive bioassay using sequential enzyme-linked immunosorbent assaycapillary isoelectric focusing (ELISA-cIEF). Anal. 138: 3139–3141.
Yu, Q., X. Zhan, K. Liu, H. Lv, and Y. Duan (2013) Plasmaenhanced antibody immobilization for the development of a capillary-based carcinoembryonic antigen immunosensor using laser-induced fluorescence spectroscopy. Anal. Chem. 85: 4578–4585.
Mohammed, M. and M. Desmulliez (2014) Autonomous capillary microfluidic system with embedded optics for improved troponin I cardiac biomarker detection. Biosens. Bioelectron. 61: 478–484.
Cao, Y. -C. (2015) A capillary based chemiluminscent multitarget immunoassay. J. Fluorescence 25: 563–568.
Yu, Q., X. Wang, and Y. Duan (2014) Capillary-based threedimensional immunosensor assembly for high-performance detection of carcinoembryonic antigen using laser-induced fluorescence spectrometry. Anal. Chem. 86: 1518–1524.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, D., Hwang, J., Seo, Y. et al. Optical Immunosensors for the Efficient Detection of Target Biomolecules. Biotechnol Bioproc E 23, 123–133 (2018). https://doi.org/10.1007/s12257-018-0087-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12257-018-0087-x
