Skip to main content
Log in

Designing a Non-invasive Surface Acoustic Resonator for Ultra-high Sensitive Ethanol Detection for an On-the-spot Health Monitoring System

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Surface acoustic wave (SAW) sensors–based on piezoelectric crystal resonators–are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. In this study, we present a critical review of the recent researches and developments predominantly used for SAW-based organic vapor sensors, especially ethanol. Besides highlighting their potential to realize real-time ethanol sensing, their drawbacks such as indirect sensing, invasive, time initializing, and low reliability, are properly discussed. The study investigates a proposed YZ-lithium niobate piezoelectric substrate with interdigital transducers patterned on the surface. Design of the resonator plays an important role in improving mass sensitivity, particularly the sensing area. Accordingly, a tin dioxide (SnO2) layer with a specific thickness is generated on the surface of the sensor because of its high affinity to ethanol molecules. To determine the values of sensor configuration without facing the practical problems and the long theoretical calculation time, it is shown that the mass sensitivity of SAW sensors can be calculated by a simple three-dimensional (3-D) finite element analysis (FEA) using a commercial finite-element platform. In design validation step, different concentrations of ethanol are applied to investigate the acoustic wave properties of the sensor. The FEA data are used to obtain the surface and bulk total displacements of the sensor and fast Fourier transform (FFT) on output spectrum. The sensor could develop into highly sensitive and fast responsive structure so that a positive intensity shift of 0.18e-2 RIU is observed when the sensor is exposed to 15 ppm ethanol. It is capable of continuously monitoring the ethanol gas whether as an ultra-high sensitive sensor or switching applications for medical and industrial purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell, C. (1998) Surface acoustic wave devices for mobile and wireless communications. Academic press.

    Google Scholar 

  2. Ding, X., P. Li, S.-C. S. Lin, Z. S. Stratton, N. Nama, F. Guo, D. Slotcavage, X. Mao, J. Shi, and F. Costanzo (2013) Surface acoustic wave microfluidics. Lab Chip. 13: 3626–3649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yeo, L. Y. and J. R. Friend (2014) Surface acoustic wave microfluidics. Annu. Rev. Fluid Mech. 46: 379–406.

    Article  Google Scholar 

  4. Zhang, A.-L., Y.-Q. Wei, and Q.-J. Han (2012) A microreactor with surface acoustic wave micro–heating system. Ferroelect. 432: 22–31.

    Article  CAS  Google Scholar 

  5. Zhang, A.-L., X. Q. Zhang, W.-Y. Hu, and X. T. Fu (2017) A shape memory alloy microvalve switching off by surface acoustic wave. Ferroelect. 506: 1–9.

    Article  CAS  Google Scholar 

  6. Xuan, W., M. He, N. Meng, X. He, W. Wang, J. Chen, T. Shi, T. Hasan, Z. Xu, and Y. Xu (2014) Fast response and high sensitivity ZnO/glass surface acoustic wave humidity sensors using graphene oxide sensing layer. Sci. Rep. 4: 7206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sun, C., Z. Chen, R. Tong, H. Xu, and C. Han (2015) Theoretical modeling and experimental testing for SAW torque sensing. pp. 120–124. In: Piezoelectricity, Acoust. Waves, Device Appl. (SPAWDA), 2015 Symp.

    Chapter  Google Scholar 

  8. Tang, Y., Z. Li, J. Ma, L. Wang, J. Yang, B. Du, Q. Yu, and X. Zu (2015) Highly sensitive surface acoustic wave (SAW) humidity sensors based on sol––gel SiO 2 films: Investigations on the sensing property and mechanism. Sens. Actuators B Chem. 215: 283–291.

    Article  CAS  Google Scholar 

  9. Lin, S., B. Peng, C. Li, D. Gong, Z. Yang, X. Liu, and W. Zhang (2016) The characterization of surface acoustic wave devices based on AlN–Metal structures. Sensor. 16: 526.

    Article  CAS  Google Scholar 

  10. Smith, J. P. and V. Hinsonsmith (2006) The new era of SAW devices. Anal. Chem. 78: 1284–1286.

    Google Scholar 

  11. Jin, H., J. Zhou, X. He, W. Wang, H. Guo, S. Dong, D. Wang, Y. Xu, J. Geng, J. K. Luo, and W. I. Milne (2013) Flexible surface acoustic wave resonators built on disposable plastic film for electronics and lab–on–a–chip applications. Sci. Rep. 3: 2140.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Yeo, L. Y. and J. R. Friend (2009) Ultrafast microfluidics using surface acoustic waves. Biomicrofluidic. 3: 12002.

    Article  CAS  Google Scholar 

  13. Du, X. Y., Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Flewitt, W. I. Milne, D.-S. Lee, N.-M. Park, J. Park, and Y. J. Choi (2008) ZnO film thickness effect on surface acoustic wave modes and acoustic streaming. Appl. Phys. Lett. 93: 94105.

    Article  CAS  Google Scholar 

  14. Cernadas, D., C. Trillo, and P. Mariano (2002) Non–destructive testing with surface acoustic waves using double–pulse TVholography. Meas Sci. Technol. 13: 438.

    CAS  Google Scholar 

  15. Du, X. Y., Y. Q. Fu, J. K. Luo, A. J. Flewitt, and W. I. Milne (2009) Microfluidic pumps employing surface acoustic waves generated in ZnO thin films. J. Appl. Phys. 105: 24508.

    Article  CAS  Google Scholar 

  16. Lim, C., W. Wang, S. Yang, and K. Lee (2011) Development of SAW–based multi–gas sensor for simultaneous detection of CO2 and NO2. Sensors Actuators B Chem. 154: 9–16.

    Article  CAS  Google Scholar 

  17. Koochakzadeh, S., M. Richardson, V. R. Bhethanabotla, and S. K. R. S. Sankaranarayanan (2015) Microcavity assisted acoustic wave channeling can lead to high sensitivity and ultra–low power SAW sensors. Sensors 1–4. In

    Google Scholar 

  18. Richardson, M., S. Sankaranarayanan, and V. R. Bhethanabotla (2014) Shear–horizontal surface acoustic wave phononic device with high density filling material for ultra–low power sensing applications. Appl. Phys. Lett. 104: 253501.

    Article  CAS  Google Scholar 

  19. Brocato, R. W. (2004) Programmable SAW Development. Sandia National Laboratories.

    Google Scholar 

  20. Jahanshahi, P. (2015) Sensitivity enhancement of graphene–based surface plasmon resonance biosensor using germanium nanowires grating. J. Med. Bioeng. 4: 145–149.

    Google Scholar 

  21. Jahanshahi, P., E. Dermosesian, F. Rafiq, and M. Adikan (2004) Numerical and analytical investigation of a SPR structure as Biosensor. OSA Publishing.

    Google Scholar 

  22. Jahanshahi, P., A. Parvizi, and F. R. Mahamd Adikan (2013) Three–dimensional modeling of surface plasmon resonance based biosensor. 8801: 880109. Proceedings of European Conferences on Biomedical Optics. Munich, Germany.

    Google Scholar 

  23. Jahanshahi, P., E. Zalnezhad, S. D. Sekaran, and F. R. M. Adikan (2014) Rapid Immunoglobulin M–based dengue diagnostic test using surface plasmon resonance biosensor. Sci. Rep. 4: 3851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jahanshahi, P., S. D. Sekaran, and F. R. M. Adikan (2015) Optical and analytical investigations on dengue virus rapid diagnostic test for IgM antibody detection. Med. Biol. Eng. Comput. DOI 10.1007/s11517–015–1262–2.

    Google Scholar 

  25. Jahanshahi, P., Q. Wei, Z. Jie, M. Ghomeishi, S. D. Sekaran, and F. R. Mahamd Adikan (2017) Kinetic analysis of IgM monoclonal antibodies for determination of dengue sample concentration using SPR technique. Bioengin. 8: 239–247.

    Article  CAS  Google Scholar 

  26. Benetti, M., D. Cannata, F. Di Pictrantonio, and E. Verona (2005) Growth of AlN piezoelectric film on diamond for high–frequency surface acoustic wave devices. IEEE Trans Ultrason. Ferroelectr. Freq. Contro. 52: 1806–1811.

    Article  Google Scholar 

  27. Vellekoop, M. J. (1998) Acoustic wave sensors and their technology. Ultrason. 36: 7–14.

    Article  Google Scholar 

  28. Stefanescu, D. M. (2011) Acoustic Force Transducers. pp: 251–274. In: Handbook of Force Transducers. Springer.

    Chapter  Google Scholar 

  29. Morgan, D. P. (1998) History of SAW devices. pp: 439–460. In IEEE International Frequency Control Symposium.

    Google Scholar 

  30. Abdollahi, A., Z. Jiang, and S. A. Arabshahi (2007) Evaluation on mass sensitivity of SAW sensors for different piezoelectric materials using finite–element analysis. IEEE Trans. Ultrason. Ferroelectr. Freq. Contro. 54: 2446–2455.

    Article  Google Scholar 

  31. Jakubik, W. P. (2011) Surface acoustic wave–based gas sensors. Thin Solid Film. 520: 986–993.

    Article  CAS  Google Scholar 

  32. Cheong, H. and M. Lee (2006) Sensing characteristics and surface reaction mechanism of alcohol sensors based on doped SnO~ 2. J. Ceram Proc. Res. 7: 183.

    Google Scholar 

  33. Lieber, C. S. and C. S. Davidson (1962) Some metabolic effects of ethyl alcohol. Am. J. Med. 33: 319–327.

    Article  CAS  PubMed  Google Scholar 

  34. Queipo–Ortuño, M. I., M. Boto–Ordóñez, M. Murri, J. M. Gomez–Zumaquero, M. Clemente–Postigo, R. Estruch, F. C. Diaz, C. Andrés–Lacueva, and F. J. Tinahones (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. Am. J. Clin. Nutr. 95: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  35. Gonzalo, P. (2014) Biomarkers of chronic alcohol misuse. Curr. Biomark Find. 4: 9–22.

    Article  CAS  Google Scholar 

  36. Anton, R. F. (2010) Editorial commentary: Alcohol biomarker papers. Alcohol Clin. Exp. Res. 34: 939–940.

    Article  PubMed  Google Scholar 

  37. SAMHSA (2012) The role of biomarkers in the treatment of alcohol use disorders. Subst. Abus. Treat Advis. 11: 1–7.

    Google Scholar 

  38. Helander, A., O. Péter, and Y. Zheng (2012) Monitoring of the alcohol biomarkers PEth, CDT and EtG/EtS in an outpatient treatment setting. Alcohol Alcoho. 47: 552–557.

    Article  CAS  Google Scholar 

  39. Center for Substance Abuse Treatment (2006) The role of biomarkers in the treatment of alcohol use disorders. Subst. Abus. Treat Advis. 5: 1–7.

    Google Scholar 

  40. Helander, A., M. Böttcher, C. Fehr, N. Dahmen, and O. Beck (2009) Detection times for urinary ethyl glucuronide and ethyl sulfate in heavy drinkers during alcohol detoxification. Alcohol Alcoho. 44: 55.

    Article  CAS  Google Scholar 

  41. Jatlow, P. and S. S. O’Malley (2010) Clinical (Nonforensic) application of ethyl glucuronide measurement: Are we ready? Alcohol Clin. Exp. Res. 34: 968–975.

    Article  CAS  Google Scholar 

  42. Walsham, N. E. and R. A. Sherwood (2012) Ethyl glucuronide. Ann. Clin. Biochem. 49: 110.

    Article  CAS  PubMed  Google Scholar 

  43. Jatlow, P. I., A. Agro, R. Wu, H. Nadim, B. A. Toll, E. Ralevski, C. Nogueira, J. Shi, J. D. Dziura, and I. L. Petrakis (2014) Ethyl glucuronide and ethyl sulfate assays in clinical trials, interpretation, and limitations: results of a dose ranging alcohol challenge study and 2 clinical trials. Alcohol Clin. Exp. Res. 38: 2056–2065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Høiseth, G., J. P. Bernard, R. Karinen, L. Johnsen, A. Helander, A. S. Christophersen, and J. Mørland (2007) A pharmacokinetic study of ethyl glucuronide in blood and urine: applications to forensic toxicology. Forensic Sci. Int. 172: 119.

    Article  CAS  PubMed  Google Scholar 

  45. Helms, E. (2017) Chapter 6. doi: 10.1016/B978–0–12–388437–4.00006–5

    Google Scholar 

  46. Phillips, R. C. (1988) Colorimetric ethanol analysis method and test device.

    Google Scholar 

  47. Nath, R. K. and S. S. Nath (2009) Tin dioxide thin–film–based ethanol sensor prepared by spray pyrolysis. Sensors Mater. 21: 95–104.

    CAS  Google Scholar 

  48. Punnoose, S. and J. S. J. Kumar (2015) Mems alcohol sensor for safety of driver in automobiles. ARPN J. Eng. Appl. Sci. 10: 4306–4310.

    Google Scholar 

  49. TGS822 Datasheet. https://doi.org/www.datasheetspdf.com/datasheet/TGS822.html

  50. MQ–303A Datasheet. https://doi.org/www.datasheetspdf.com/datasheet/MQ-303A.html.

  51. TECHNICAL DATA MQ–3 GAS SENSOR. https://doi.org/www.sparkfun.com/datasheets/Sensors/MQ-3.pdf

  52. Karvinen, T., K. Karvinen, and V. Valtokari (2014) Make: Sensors: A Hands–On Primer for Monitoring the Real World with Arduino and Raspberry Pi. Maker Media, Inc.

    Google Scholar 

  53. Multiphysics, C. (2005) Comsol, Inc. Burlington, MA.

  54. Slobodnik, A. J. (1976) Surface acoustic waves and SAW materials. Proc. IEE. 64: 581–595.

    Article  CAS  Google Scholar 

  55. Serin, T., N. Serin, S. Karadeniz, H. Sari, N. Tugluoglu, and O. Pakma (2006) Electrical, structural and optical properties of SnO2 thin films prepared by spray pyrolysis. J. Non. Cryst. Solid. 352: 209–215.

    Article  CAS  Google Scholar 

  56. Ahmadi, S., F. Hassani, C. Korman, M. Rahaman, and M. Zaghloul (2004) Characterization of multi–and single–layer structure SAW sensor [gas sensor]. pp: 1129–1132. Proceedings of IEEE Conference on Sensors.

    Google Scholar 

Download references

Acknowledgement

This work was supported by a grant from the National Science Foundation of China (No. 51435009 and No. 51775348).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peyman Jahanshahi or Qin Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanshahi, P., Wei, Q., Jie, Z. et al. Designing a Non-invasive Surface Acoustic Resonator for Ultra-high Sensitive Ethanol Detection for an On-the-spot Health Monitoring System. Biotechnol Bioproc E 23, 394–404 (2018). https://doi.org/10.1007/s12257-017-0432-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0432-5

Keywords

Navigation