Advertisement

Biotechnology and Bioprocess Engineering

, Volume 23, Issue 1, pp 108–115 | Cite as

Application of ZFN for Site Directed Mutagenesis of Rice SSIVa Gene

  • Yu-Jin Jung
  • Franz Marielle Nogoy
  • Sang-Kyu Lee
  • Yong-Gu Cho
  • Kwon-Kyoo KangEmail author
Research Paper

Abstract

Many successful studies on genome editing in plants have been reported and one of the popular genome editing technology used in plants is Zinc Finger Nucleases (ZFN), which are chimeric proteins composed of synthetic zinc finger-based DNA binding domain and a DNA cleavage domain. The objective of this research was to utilize ZFNs to induce a double-stranded break in SSIVa, a soluble starch synthase involved in starch biosynthesis pathway, leading to the regulation of the SSIVa expression. The isoform SSIVa is not yet well studied, thus, by modifying the endogenous loci in SSIVa, we can explore on the specific roles of this gene in starch biosynthesis and other possible functions it might play. In this study, we used ZFN-mediated targeted gene disruption in the coding sequence of the SSIVa rice gene in an effort to elucidate the functional role of the gene. Generation of transgenic plants carrying premature stop codons and substitution events, revealed no SSIVa mRNA expression, low starch contents and dwarf phenotypes. Remarkably, based on our analysis SSIVa gene disruption had no effect on other starch synthesis related genes as their expression remained at wild type levels. Therefore, the engineered ZFNs can efficiently cleave and stimulate mutations at SSIVa locus in rice to

Keywords

zinc finger nucleases (ZFN) SSIVa gene starch biosynthesis rice starch content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2017_420_MOESM1_ESM.pdf (1.2 mb)
Supplementary material, approximately 1222 KB.

References

  1. 1.
    BeMiller, J. and R. Whistler Roy (2009) Genetics and physiology of starch development. 3rd ed., p. 24. Academic Press Elsevier Inc, Burlington.Google Scholar
  2. 2.
    Ai, Y. (2013) Structures, properties, and digestibility of resistant starch. Graduate theses and dissertations. Iowa State University, Ames City.Google Scholar
  3. 3.
    Kharabian-Masouleh, A., D. L. E. Waters, R. Reinke, R. Ward, and R. Henry (2012) SNP in starch biosynthesis genes associated with nutritional and functional properties of rice. Sci. Rep. 2: 557.CrossRefGoogle Scholar
  4. 4.
    Kim, Y. G., J. Cha, and S. Chandrasegaran (1996) Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA. 93: 1156–1160.CrossRefGoogle Scholar
  5. 5.
    Cathomen, T. and J. K. Joung (2008) Zinc-finger nucleases: The next generation emerges. Mol. Ther. 16: 1200–1207.CrossRefGoogle Scholar
  6. 6.
    Kim, Y. G., Y. Shi, J. M. Berg, and S. Chandrasegaran (1997) Site-specific cleavage of DNARNA hybrids by zinc finger/FokI cleavage domain fusions. Gene 203: 43–49.CrossRefGoogle Scholar
  7. 7.
    Klug, A. (2005) Towards therapeutic applications of engineered zinc finger proteins. FEBS Lett. 579: 892–894.CrossRefGoogle Scholar
  8. 8.
    Mani, M., K. Kandavelou, F. J. Dy, S. Durai, and S. Chandrasegaran (2005) Design, engineering, and characterization of zinc finger nucleases. Biochem. Biophys. Res. Commun. 335: 447–457.CrossRefGoogle Scholar
  9. 9.
    Lee, H. J., S. E. Abdula, M. G. Jee, D. W. Jang, and Y. G. Cho (2011) High-efficiency and rapid Agrobacterium-mediated genetic transformation method using germinating rice seeds. J. Plant Biotechnol. 38: 251–257.CrossRefGoogle Scholar
  10. 10.
    Thole, V., S. C. Alves, B. Worland, M. W. Bevan, and P. Vain (2009) A protocol for efficiently retrieving and characterizing flanking sequence tags (FSTs) in Brachypodium distachyon TDNA insertional mutants. Nat. Protocols 4: 650–661.CrossRefGoogle Scholar
  11. 11.
    Stitt, M., R. M. Lilley, R. Gerhardt, and H. W. Heldt (1989) Determination of metabolite levels in specific cells and subcellular compartments of plant leaves. Method Enzymol. 174: 518–522.CrossRefGoogle Scholar
  12. 12.
    Park, S. H., S. W. Bang, J. S. Jeong, H. R. Jung, M. C. F. R. Redillas, H. I. Kim, K. H. Lee, Y. S. Kim, and J. K. Kim (2012) Analysis of the APX, PGD1 and R1G1B constitutive gene promoters in various organs over three homozygous generations of transgenic rice plants. Planta 235: 1397–1408.CrossRefGoogle Scholar
  13. 13.
    Osakabe, Y. and K. Osakabe (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol. 56: 389–400.CrossRefGoogle Scholar
  14. 14.
    Kim, E., S. Kim, D. H. Kim, B. S. Choi, I. Y. Choi, and J. S. Kim (2012) Precision genome engineering with programmable DNAnicking enzymes. Genome Res. 22: 1327–1333.CrossRefGoogle Scholar
  15. 15.
    Ramirez, C. L., M. T. Certo, C. Mussolino, M. J. Goodwin, T. J. Cradick, and A. P. McCaffrey (2012) Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. 40: 5560–5568.CrossRefGoogle Scholar
  16. 16.
    Wang, J., G. Friedman, Y. Doyon, N. S. Wang, C. J. Li, and J. C. Miller (2012) Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. 22: 1316.CrossRefGoogle Scholar
  17. 17.
    Hennen-Bierwagen, T. A., Q. H. Lin, F. Grimaud, V. Planchot, P. L. Keeling, and M. G. James (2009) Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: A model for regulation of carbon allocation in maize amyloplasts. Plant Physiol. 149: 1541–1559.CrossRefGoogle Scholar
  18. 18.
    James, M. G., K. Denyer, and A. M. Myers (2003) Starch synthesis in the cereal endosperm. Curr. Opin. Plant Biol. 6: 215–222.CrossRefGoogle Scholar
  19. 19.
    Szydlowski, N., P. Ragel, S. Raynaud, M. M. Lucas, I. Roldán, M. Montero, F. J. Muoz, M. Ovecka, A. Bahaji, V. Planchot, J. Pozueta-Romero, C. D’Hulst, and A. Mérida (2009) Starch granule initiation in Arabidopsis requires the presence of either class IV or class II starch synthases. The Plant Cell 21: 2443–2357.CrossRefGoogle Scholar
  20. 20.
    Taylor, M. C., M. Pickel, K. J. Lu, C. Hylton, R. Feil, S. Eicke, J. Lunn, S. Zeeman, and A. Smith (2013) Starch synthase 4 is essential for coordination of starch granule formation with chloroplast division during Arabidopsis leaf expansion. New Phytol. 200: 1064–1075.CrossRefGoogle Scholar
  21. 21.
    Arjona, F., J. Li, S. Raynaud, E. Fernandez, F. Munoz, M. Ovecka, P. Ragel, A. Bahaji, J. Romero, and A. Merida (2011) Enhancing the expression of starch synthase class IV results in increased levels of both transitory and long-term storage starch. Plant Biotechnol. J. 9: 1049–1060.CrossRefGoogle Scholar
  22. 22.
    Gibon, Y., E.T. Pyl, R. Sulpice, J. E. Lunn, M. Hohne, M. Gunther, and M. Stitt (2009) Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 32: 859–874.CrossRefGoogle Scholar
  23. 23.
    Roldan, I., M. M. Lucas, D. Delvalle, V. Planchot, S. Jimenez, R. Perez, S. Ball, C. D’Hulst, and A. Merida (2007) The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J. 49: 492–504.CrossRefGoogle Scholar
  24. 24.
    Lee, H. J., M. G. Jee, J. K. Kim, F. M. Nogoy, M. C. Niño, D. A. Yu, and M. S. Kim (2014) Modification of starch composition using RNAi targeting soluble starch synthase I in Japonica rice. Plant Breed. Biotech. 2: 301–312.CrossRefGoogle Scholar
  25. 25.
    Orzechowski, S. (2008) Starch metabolism in leaves. Acta Biochim. Polon. 55: 435–445.Google Scholar
  26. 26.
    Sun, M. M., S. E. Abdula, H. J. Lee, Y. C. Cho, L. Z. Han, and H. J. Koh (2011) Molecular aspect of good eating quality formation in Japonica Rice. PLoS ONE 6: e18385.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu-Jin Jung
    • 1
    • 2
  • Franz Marielle Nogoy
    • 3
  • Sang-Kyu Lee
    • 4
  • Yong-Gu Cho
    • 3
  • Kwon-Kyoo Kang
    • 1
    • 2
    Email author
  1. 1.Department of Horticulture Life ScienceHankyong National UniversityAnsungKorea
  2. 2.Institute of Genetic EngineeringHankyong National UniversityAnsungKorea
  3. 3.Department of Crop ScienceChungbuk National UniversityCheongjuKorea
  4. 4.Department of Genetic EngineeringKyunghee UniversityYonginKorea

Personalised recommendations