Biotechnology and Bioprocess Engineering

, Volume 22, Issue 6, pp 739–747 | Cite as

Assessment of organic removal in series- and parallel-connected microbial fuel cell stacks

  • Taeyoung Kim
  • Sukwon Kang
  • Hyun Woo Kim
  • Yee Paek
  • Je Hoon Sung
  • Young Hwa Kim
  • Jae Kyung Jang
Research Paper
  • 46 Downloads

Abstract

Microbial fuel cells (MFCs) degrade organic contaminants in wastewater while simultaneously producing electricity, but must be stacked to yield adequate voltage and current. This study examined the evolution of the chemical oxygen demand (COD) removal rate and efficiency in two identical individual MFCs (i-MFCs) in series- and parallel-connected stacks (sc- and pc-MFCs, respectively) under batch and continuous operation. The stack voltage and current increased in the respective series and parallel connections of the two i-MFCs (MFC unit 1 and MFC unit 2). Voltage reversal was observed in the sc- MFC below an external load of 100 Ω. Regardless of occurrence of the voltage reversal, organic reduction between i-MFCs and sc-MFCs showed no significant difference (gap of < 9% and < 6% in COD removal rate and efficiency, respectively); additionally, organic removals between the two individual MFCs in series indicated differences less than 9% of COD removal rate and 5% of COD removal efficiency in batch mode. Continuous operation also yielded similar organic removals as the MFCs in individual and series connection (voltage reversal occurred) mode, even over 8 days operation. Parallel connection yielded identical organic removals and currents in the two individual MFCs of the pc-MFC, even though the two separate i-MFCs showed different organic removal rates and current productions. This study provides the guide for the application of stacked MFCs for power source and efficient organic pollutant removal in wastewater treatment process.

Keywords

microbial fuel cell stack voltage reversal organic removal series connection parallel connection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12257_2017_378_MOESM1_ESM.pdf (264 kb)
Assessment of organic removal in series- and parallel-connected microbial fuel cell stacks

References

  1. 1.
    Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim (2006) Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163–177.Google Scholar
  2. 2.
    Liu, H. and B. E. Logan (2004) Electricity generation using an air-cathode single chamber microbial fuel cell in the presence and absence of a proton exchange membrane. Environ. Sci. Technol. 38: 4040–4046.CrossRefGoogle Scholar
  3. 3.
    Jayashree, C., S. Sweta, P. Arulazhagan, I. T. Yeom, M. I. I. Iqbal, and B. J. Rajesh (2015) Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell. Biotechnol. Bioproc. Eng. 20: 753–759.CrossRefGoogle Scholar
  4. 4.
    Zhang, G., Q. Zhao, Y. Jiao, and D. -J. Lee (2015) Long-term operation of manure-microbial fuel cell. Bioresour. Technol. 180: 365–369.CrossRefGoogle Scholar
  5. 5.
    Kim, T., J. An, J. K. Jang, and I. S. Chang (2015) Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery. Bioresour. Technol. 195: 217–222.CrossRefGoogle Scholar
  6. 6.
    He, Z., S. D. Minteer, and L. T. Angenent (2005) Electricity generation from artificial wastewater using an upflow microbial fuel cell. Environ. Sci. Technol. 39: 5262–5267.CrossRefGoogle Scholar
  7. 7.
    Logan, B., S. Cheng, V. Watson, and G. Estadt (2007) Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41: 3341–3346.CrossRefGoogle Scholar
  8. 8.
    Aelterman, P., K. Rabaey, H. T. Pham, N. Boon, and W. Verstraete (2006) Continuous electricity generation at high voltages and currents using stacked microbial fuel cells. Environ. Sci. Technol. 40: 3388–3394.CrossRefGoogle Scholar
  9. 9.
    Oh, S. -E. and B. E. Logan (2007) Voltage reversal during microbial fuel cell stack operation. J. Power Sources. 167: 11–17.CrossRefGoogle Scholar
  10. 10.
    Dekker, A., A. T. Heijne, M. Saakes, H. V. Hamelers, and C. J. Buisman (2009) Analysis and improvement of a scaled-up and stacked microbial fuel cell. Environ. Sci. Technol. 43: 9038–9042.CrossRefGoogle Scholar
  11. 11.
    Li, J., H. Li, Q. Fu, Q. Liao, X. Zhu, H. Kobayashi, and D. Ye (2017) Voltage reversal causes bioanode corrosion in microbial fuel cell stacks. Int. J. Hydrogen Energy 42: 27649–27656.CrossRefGoogle Scholar
  12. 12.
    Zhuang, L., Y. Zheng, S. Zhou, Y. Yuan, H. Yuan, and Y. Chen (2012) Scalable microbial fuel cell (MFC) stack for continuous real wastewater treatment. Bioresour. Technol. 106: 82–88.CrossRefGoogle Scholar
  13. 13.
    An, J., Y. S. Lee, T. Kim, and I. S. Chang (2016) Significance of maximum current for voltage boosting of microbial fuel cells in series. J. Power Sources. 323: 23–28.CrossRefGoogle Scholar
  14. 14.
    Dewan, A., H. Beyenal, and Z. Lewandowski (2008) Scaling up microbial fuel cells. Environ. Sci. Technol. 42: 7643–7648.CrossRefGoogle Scholar
  15. 15.
    Wu, S., H. Li, X. Zhou, P. Liang, X. Zhang, Y. Jiang, and X. Huang (2016) A novel pilot-scale stacked microbial fuel cell for efficient electricity generation and wastewater treatment. Water Res. 98: 396–403.CrossRefGoogle Scholar
  16. 16.
    Jang, J. K., H. S. Moon, I. S. Chang, and B. H. Kim (2005) Improved performance of microbial fuel cell using membraneelectrode assembly. J. Microbiol. Biotechnol. 15: 438–441.Google Scholar
  17. 17.
    Kim, T., S. Kang, J. H. Sung, Y. K. Kang, Y. H. Kim, and J. K. Jang (2016) Characterization of polyester cloth as an alternative separator to Nafion membrane in microbial fuel cells for bioelectricity generation using swine wastewater. J. Microbiol. Biotechnol. 26: 2171–2178.CrossRefGoogle Scholar
  18. 18.
    Kim, D. and I. S. Chang (2009) Electricity generation from synthesis gas by microbial processes: CO fermentation and microbial fuel cell technology. Bioresour. Technol. 100: 4527–4530.CrossRefGoogle Scholar
  19. 19.
    An, J., T. Kim, and I. S. Chang (2016) Concurrent control of power overshoot and voltage reversal with series connection of parallel-connected microbial fuel cells. Energy Technol. 4: 729–736.CrossRefGoogle Scholar
  20. 20.
    Zhao, N., I. Angelidaki, and Y. Zhang (2017) Electricity generation and microbial community in response to short-term changes in stack connection of self-stacked submersible microbial fuel cell powered by glycerol. Water Res. 109: 367–374.CrossRefGoogle Scholar

Copyright information

© The Korean Society for Biotechnology and Bioengineering and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Taeyoung Kim
    • 1
  • Sukwon Kang
    • 1
  • Hyun Woo Kim
    • 2
  • Yee Paek
    • 1
  • Je Hoon Sung
    • 1
  • Young Hwa Kim
    • 1
  • Jae Kyung Jang
    • 1
  1. 1.Energy and Environmental Engineering Division, National Institute of Agricultural ScienceRural Development AdministrationJeonjuKorea
  2. 2.Department of Environmental EngineeringChonbuk National UniversityJeonjuKorea

Personalised recommendations