Skip to main content
Log in

Novel rhodanine derivatives are selective algicides against Microcystis aeruginosa

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, a series of rhodanine derivatives containing various substituents was synthesized and tested for in vitro algicidal activity. Among the tested substituent groups, phenyl substituents with halogen groups showed good inhibitory potency. Furthermore, the compound with chlorine at the C2 position of the phenyl ring exhibited a higher algicidal effect than the compound with chlorine at the C3 position of the phenyl ring. Among the various rhodanine derivatives tested, 5-(2,4-dichlorobenzylidene)- rhodanine (compound 20) was the most potent inhibitor against M. aeruginosa with a lethal concentration 50 (LC50) value of 0.65 μM and Selenastrum capricornutum with an LC50 value of 0.82 μM. To verify the feasibility of their use in ecosystems, 25 h of acute ecotoxicity tests were carried out for three derivatives against Danio rerio and Daphnia magna. No mortality was observed in groups exposed to 2.0 μM of compound 20 after 100 h of exposure. Moreover, a survival rate of 100% was observed in D. magna exposed to 2 μM of compound 20 for 100 h. Overall, the results show that rhodanine derivatives are a possible method for controlling and inhibiting harmful algal blooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D. M. (2009) Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coastal Manag. 52: 342–347.

    Article  Google Scholar 

  2. Kim, D., Y. Matsuyama, S. Nagasoe, M. Yamaguchi, Y. Ion, Y. Oshima, N. Imada, and T. Honjo (2004) Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides. J. Plankton Res. 26: 1–6.

    Article  CAS  Google Scholar 

  3. Yanagi, T., T. Yamamoto, Y. Koizumi, T. Ikeda, M. Kamizono, and H. Tamori (1995) A numerical simulation of red tide formation. J. Mar. Syst. 6: 269–285.

    Article  Google Scholar 

  4. Kim, C. S., S. G. Lee, and H. G. Kim (2000) Biochemical responses of fish exposed to a harmful dinoflagellate Cochlodinium polykrikoides. J. Exp. Mar. Biol. Ecol. 254: 131–141.

    Article  CAS  PubMed  Google Scholar 

  5. Boesch, D. F., D. M. Anderson, R. A. Horner, S. E. Shumway, P. A. Tester, and T. E. Whitledge (1997) NOAA Coastal Ocean Program Decision Analysis Series. p. 46. No. 10. NOAA Coastal Office, Sliver Spring, MD.

    Google Scholar 

  6. Shirota, A. (1989) Red tide problem and countermeasures. Int. J. Aquat. Fish Technol. 1: 195–223.

    Google Scholar 

  7. Choi, H. G., P. J. Kim, W. C. Lee, S. J. Yun, H. G. Kim, and H. J. Lee (1998) Removal efficiency of cochiodinium polykrikoides by Yellow Loess. J. Kor. Fish Soc. 31: 109–113.

    Google Scholar 

  8. Gumbo, R. J., G. Ross, and E. T. Cloete (2008) Biological control of microcystis dominated harmful algal blooms. Afr. J. Biotechnol. 7: 4765–4773.

    Google Scholar 

  9. Sengco, M. R. and D. M. Anderson (2004) Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51: 169–172.

    Article  CAS  PubMed  Google Scholar 

  10. Yu, Z., M. R. Sengco, and D. M. Anderson (2004) Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays. J. Appl. Phycol. 16: 101–110.

    Article  Google Scholar 

  11. Liu, J., H. Zhang, W. Yang, J. Gao, and Q. Ke (2004) Studies on biquaternary ammonium salt algaecide for removing red tide algae. Mar. Sci. Bull. 6: 60–65.

    Article  Google Scholar 

  12. Jancula, D., M. Drabkova, J. Cerny, M. Karaskova, R. Korýnkova, J. Rakusan, and B. Marsalek (2008) Algicidal activity of phthalocyanines. Environ. Toxicol. 23: 218–223.

    Article  CAS  PubMed  Google Scholar 

  13. Daniel, J., S. Jana, G. Jakub, S. Marie, M. Blahoslva, and T. Eva (2007) Effects of aqueous extracts from five species of the family Papaveraceae on selected aquatic organisms. Envir. Toxi. 480–486.

    Google Scholar 

  14. Kim, Y. M., Y. Wu, T. U. Duong, G. S. Ghodake, S. W. Kim, E. S. Jin, and H. Cho (2010) Thiazolidinediones as a novel class of algicides against red tide harmful algal species. Appl. Biochem. Biotechnol. 162: 2273–2283.

    Article  CAS  PubMed  Google Scholar 

  15. Kim, Y. M., Y. Wu, T. U. Duong, S. G. Jung, S. W.S, Kim, H. Cho, and E. S. Jin (2012) Algicidal activity of thiazolidinedione derivatives against harmful algal blooming species. Mar. Biotechnol. 14: 312–322.

    Article  CAS  PubMed  Google Scholar 

  16. Wu, Y., Y. Lee, S. G. Jung, C. Y. Eom, S. W Kim, H. Cho, and E. S. Jin (2014) A novel thiazolinedione derivative TD118 showing selective algicidal effects for red tide control. World J. Microbiol. Biotechnol. 30: 1603–1614.

    Article  CAS  PubMed  Google Scholar 

  17. You, D. S., Y. W, Lee, Choi, D. B., Y. C. Chang, and H. Cho (2017) Algicidal effects of thiazolinedione derivatives against Microcystis aeruginosa. Kor. J. Chem. Eng. 34: 139–149.

    Article  CAS  Google Scholar 

  18. Kwon, H. L., J. H, Kim, D. H. Na, D. H. Byeun, Y. Wu, S. W. Kim, E. S. Jin, and H. Cho (2013) Combination of 1,4-Naphthoquinonewith benzothiazoles had selective algicidal effects against harmful algae. Biotech. Bioproc. Eng. 18: 932–941.

    Article  CAS  Google Scholar 

  19. Ernst, R., N. I. Roland, and A. A. Gordon (1947) Rhodanine. Org. Synth. 27: 73–74.

    Article  Google Scholar 

  20. Nencki, M. (1877) Ueber die einwirkung der monochloressigsaure auf sulfocyansaure und ihre salze. J. Prakt. Chem. 16: 1–17.

    Article  Google Scholar 

  21. Shafii, N., M. Khoobi, M. Amini, A. Sakhteman, H. Nadri, A. Moradi, S. Emami, E. Saeedian Moghadam, A. Foroumadi, and A. Shafiee (2015) Synthesis and biological evaluation of 5-benzylidenerhodanine-3-acetic acid derivatives as AChE and 15-LOX inhibitors. J. Enz. Inhib. Med. Chem. 30: 389–395.

    Article  CAS  Google Scholar 

  22. Tomasic, T. and L. Peterlin Masic (2012) Rhodanine as a scaffold in drug discovery: A critical review of its biological activities and mechanisms of target modulation. Expert. Opin. Drug. Discov. 7: 549–560.

    Article  CAS  PubMed  Google Scholar 

  23. Smith, T. K., B. L. Young, H. Denton, D. L. Hughes, and G. K. Wagner (2009) First small molecular inhibitors of T. brucei dolicholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg. Med. Chem. Lett. 19: 1749–1752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zingle, C., D. Tritsch, C. Grosdemange-Billiard, and M. Rohmer (2014) Catechol-rhodanine derivatives: Specific and promiscuous inhibitors of Escherichia coli deoxyxylulose phosphate reductoisomerase (DXR). Bioorg. Med. Chem. 22: 3713–3719.

    Article  CAS  PubMed  Google Scholar 

  25. Brvar, M.., A. Perdih, V. Hodnik, M. Renko, G. Anderluh, R. Jerala, and T. Solmajer (2012) In silico discovery and biophysical evaluation of novel 5-(2-hydroxybenzylidene) rhodanine inhibitors of DNA gyrase B. Bioorg. Med. Chem. 20: 2572–2579.

    Article  CAS  PubMed  Google Scholar 

  26. Tomasic, T., N. Zidar, and A. Kovac (2010) 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. Chem. Med. Chem. 5: 286–291.

    Article  CAS  PubMed  Google Scholar 

  27. Dolezel, J., P. Hirsova, and V. Opletalova (2009) Rhodanineacetic acid derivatives as potential drugs: Preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl) acetic acids. Molecules 14: 4197–4212.

    Article  CAS  PubMed  Google Scholar 

  28. Alegaon, S. G., K. R. Alagawadi, P. V. Sonkusare, S. M. Chaudhary, D. H. Dadwe, and A. S. Shah (2012) Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents. Bioorg. Med. Chem. Lett. 22: 1917–1921.

    Article  CAS  PubMed  Google Scholar 

  29. Tomasic, T. and L. Peterlin Masic (2009) Rhodanine as a privileged scaffold in drug discovery. Curr. Med. Chem. 16: 1596–1629.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DuBok Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, D.R., Kim, YO., Kim, R. et al. Novel rhodanine derivatives are selective algicides against Microcystis aeruginosa. Biotechnol Bioproc E 22, 748–757 (2017). https://doi.org/10.1007/s12257-017-0343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-017-0343-5

Keywords

Navigation